XOR is a kind of bit operator, we define that as follow: for two binary base number A and B, let C=A XOR B, then for each bit of C, we can get its value by check the digit of corresponding position in A and B. And for each digit, 1 XOR 1 = 0, 1 XOR 0 = 1, 0 XOR 1 = 1, 0 XOR 0 = 0. And we simply write this operator as ^, like 3 ^ 1 = 2,4 ^ 3 = 7. XOR is an amazing operator and this is a question about XOR. We can choose several numbers and do XOR operatorion to them one by one, then we get another number. For example, if we choose 2,3 and 4, we can get 2^3^4=5. Now, you are given N numbers, and you can choose some of them(even a single number) to do XOR on them, and you can get many different numbers. Now I want you tell me which number is the K-th smallest number among them.

InputFirst line of the input is a single integer T(T<=30), indicates there are T test cases. 
For each test case, the first line is an integer N(1<=N<=10000), the number of numbers below. The second line contains N integers (each number is between 1 and 10^18). The third line is a number Q(1<=Q<=10000), the number of queries. The fourth line contains Q numbers(each number is between 1 and 10^18) K1,K2,......KQ.OutputFor each test case,first output Case #C: in a single line,C means the number of the test case which is from 1 to T. Then for each query, you should output a single line contains the Ki-th smallest number in them, if there are less than Ki different numbers, output -1.Sample Input

2
2
1 2
4
1 2 3 4
3
1 2 3
5
1 2 3 4 5

Sample Output

Case #1:
1
2
3
-1
Case #2:
0
1
2
3
-1

题意:给定N个数,所有集合的不同异或和中,求从小到大第K个,不存在则输出-1。

思路:我们知道线性基可以表示用不超过64个数,表示出所有集合的异或和,那么为0的部位不考虑,我们求第K个,就是等效表示成二进制。。。ok了。

先求线性基,得到p数组。然后把为0的忽略,并且前面的p对后面的效果求出来。 有个注意的问题就是0,因为线性基我们没有考虑0,所以0单独考虑,如果线性基的大小和原数组大小一样,则可以表示出来,那么K--;

#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define rep2(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int maxn=;
ll p[],x;
int main()
{
int T,N,Q,Cas=;
scanf("%d",&T);
while(T--){
scanf("%d",&N);
rep(i,,) p[i]=;
rep(i,,N) {
scanf("%lld",&x);
rep2(j,,){
if(x&(1LL<<j)){
if(p[j]) x^=p[j];
else { p[j]=x;break;}
}
}
}
ll num=,ans,K;
rep(i,,) if(p[i]){
p[num++]=p[i];
rep(j,i+,) if((p[j]>>i)&) p[j]^=p[i];
}
scanf("%d",&Q);
printf("Case #%d:\n",++Cas);
while(Q--){
scanf("%lld",&K); if(N!=num) K--; //here,notice!考虑0的存在性
if(K>=(1LL<<num)) puts("-1");
else {
ans=;
rep(j,,) {
if(K&(1LL<<j)) ans^=p[j]; //不能加,还是用异或,可能有尾巴,相互抵消
}
printf("%I64d\n",ans);
}
}
}
return ;
}

HDU - 3949 :XOR(线性基,所有集合的不同异或和中,求从小到大第K个)的更多相关文章

  1. HDU 3949 XOR [线性基|高斯消元]

    目录 题目链接 题解 代码 题目链接 HDU 3949 XOR 题解 hdu3949XOR 搞死消元找到一组线性无关组 消出对角矩阵后 对于k二进制拆分 对于每列只有有一个1的,显然可以用k的二进制数 ...

  2. hdu 3949 XOR (线性基)

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=3949 题意: 给出n个数,从中任意取几个数字异或,求第k小的异或和 思路: 线性基求第k小异或和,因为题 ...

  3. HDU 3949 XOR 线性基

    http://acm.hdu.edu.cn/showproblem.php?pid=3949 求异或第k小,结论是第k小就是 k二进制的第i位为1就把i位的线性基异或上去. 但是这道题和上一道线性基不 ...

  4. hdu 3949 XOR 线性基 第k小异或和

    题目链接 题意 给定\(n\)个数,对其每一个子集计算异或和,求第\(k\)小的异或和. 思路 先求得线性基. 同上题,转化为求其线性基的子集的第k小异或和. 结论 记\(n\)个数的线性基为向量组\ ...

  5. HDU 3949 XOR ——线形基 高斯消元

    [题目分析] 异或空间的K小值. 高斯消元和动态维护线形基两种方法都试了试. 动态维护更好些,也更快(QAQ,我要高斯消元有何用) 高斯消元可以用来开拓视野. 注意0和-1的情况 [代码] 高斯消元 ...

  6. HDU 3949 XOR(高斯消元搞基)

    HDU 3949 XOR pid=3949" target="_blank" style="">题目链接 题意:给定一些数字,问任取几个异或值第 ...

  7. HDU 3949 XOR [高斯消元XOR 线性基]

    3949冰上走 题意: 给你 N个数,从中取出若干个进行异或运算 , 求最后所有可以得到的异或结果中的第k小值 N个数高斯消元求出线性基后,设秩为$r$,那么总共可以组成$2^r$中数字(本题不能不选 ...

  8. HDU 3949 XOR (线性基第k小)题解

    题意: 给出\(n\)个数,求出子集异或第\(k\)小的值,不存在输出-1. 思路: 先用线性基存所有的子集,然后对线性基每一位进行消元,保证只有\(d[i]\)的\(i\)位存在1,那么这样变成了一 ...

  9. ACM学习历程—HDU 3949 XOR(xor高斯消元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 题目大意是给n个数,然后随便取几个数求xor和,求第k小的.(重复不计算) 首先想把所有xor的 ...

随机推荐

  1. Linux 搭建 SVN

    一.yum 安装 subversion yum -y install subversion 二.创建svn版本库所在路径(建议放在opt.usr.home下) mkdir -p /usr/local/ ...

  2. JavaScript返回顶部特效

    样式: <style type="text/css"> /*返回顶部特效*/ a { border: none; text-decoration: none; outl ...

  3. 2018-2019-2 20165114《网络对抗技术》Exp3 免杀原理与实践

    Exp3 免杀原理与实践 目录 一.实验内容 二.基础问题回答 (1)杀软是如何检测出恶意代码的? (2)免杀是做什么? (3)免杀的基本方法有哪些? 三.实践过程记录 正确使用msf编码器,msfv ...

  4. Book Review of “The practice of programming” (Ⅱ)

    The practice of programming Chapter 2 Algorithms and Data Structures Searching sequential search (li ...

  5. React Native 常用学习链接地址

    Android Studio下载http://www.android-studio.org/ 第二章:Android Studio概述(一)http://ask.android-studio.org/ ...

  6. Spring核心技术AOP实现原理

    关于Spring的AOP也是Spring的非常重要的一项技术.大致上可以这样说,面向切面编程,它的出现说明可以在不修改代码的情况下实现对功能的增强.而增强就是给一个方法增加一些功能.AOP主要思想就是 ...

  7. [国家集训队2011]happiness

    Description 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友 ...

  8. Android--第三方控件--okHttp

    Android中有很多的第三方控件,其中OkHttp是一个很强大的用于网络加载的第三方框架,当然了,它的内部也是使用原生的代码封装好的.今天我们就来看一下OkHttp的简单用法: 说到网络请求,肯定就 ...

  9. angularjs跨域post解决方案

    转自:http://www.thinksaas.cn/topics/0/34/34536.html 前端同学李雷和后台同学韩梅梅分别在自己电脑上进行开发,后台接口写好的时候,李雷改动完就把前端代码上传 ...

  10. css3+jQuery实现按钮水波纹效果

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta name ...