HDU - 3949 :XOR(线性基,所有集合的不同异或和中,求从小到大第K个)
InputFirst line of the input is a single integer T(T<=30), indicates there are T test cases.
For each test case, the first line is an integer N(1<=N<=10000), the number of numbers below. The second line contains N integers (each number is between 1 and 10^18). The third line is a number Q(1<=Q<=10000), the number of queries. The fourth line contains Q numbers(each number is between 1 and 10^18) K1,K2,......KQ.OutputFor each test case,first output Case #C: in a single line,C means the number of the test case which is from 1 to T. Then for each query, you should output a single line contains the Ki-th smallest number in them, if there are less than Ki different numbers, output -1.Sample Input
2
2
1 2
4
1 2 3 4
3
1 2 3
5
1 2 3 4 5
Sample Output
Case #1:
1
2
3
-1
Case #2:
0
1
2
3
-1
题意:给定N个数,所有集合的不同异或和中,求从小到大第K个,不存在则输出-1。
思路:我们知道线性基可以表示用不超过64个数,表示出所有集合的异或和,那么为0的部位不考虑,我们求第K个,就是等效表示成二进制。。。ok了。
先求线性基,得到p数组。然后把为0的忽略,并且前面的p对后面的效果求出来。 有个注意的问题就是0,因为线性基我们没有考虑0,所以0单独考虑,如果线性基的大小和原数组大小一样,则可以表示出来,那么K--;
#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define rep2(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int maxn=;
ll p[],x;
int main()
{
int T,N,Q,Cas=;
scanf("%d",&T);
while(T--){
scanf("%d",&N);
rep(i,,) p[i]=;
rep(i,,N) {
scanf("%lld",&x);
rep2(j,,){
if(x&(1LL<<j)){
if(p[j]) x^=p[j];
else { p[j]=x;break;}
}
}
}
ll num=,ans,K;
rep(i,,) if(p[i]){
p[num++]=p[i];
rep(j,i+,) if((p[j]>>i)&) p[j]^=p[i];
}
scanf("%d",&Q);
printf("Case #%d:\n",++Cas);
while(Q--){
scanf("%lld",&K); if(N!=num) K--; //here,notice!考虑0的存在性
if(K>=(1LL<<num)) puts("-1");
else {
ans=;
rep(j,,) {
if(K&(1LL<<j)) ans^=p[j]; //不能加,还是用异或,可能有尾巴,相互抵消
}
printf("%I64d\n",ans);
}
}
}
return ;
}
HDU - 3949 :XOR(线性基,所有集合的不同异或和中,求从小到大第K个)的更多相关文章
- HDU 3949 XOR [线性基|高斯消元]
目录 题目链接 题解 代码 题目链接 HDU 3949 XOR 题解 hdu3949XOR 搞死消元找到一组线性无关组 消出对角矩阵后 对于k二进制拆分 对于每列只有有一个1的,显然可以用k的二进制数 ...
- hdu 3949 XOR (线性基)
链接: http://acm.hdu.edu.cn/showproblem.php?pid=3949 题意: 给出n个数,从中任意取几个数字异或,求第k小的异或和 思路: 线性基求第k小异或和,因为题 ...
- HDU 3949 XOR 线性基
http://acm.hdu.edu.cn/showproblem.php?pid=3949 求异或第k小,结论是第k小就是 k二进制的第i位为1就把i位的线性基异或上去. 但是这道题和上一道线性基不 ...
- hdu 3949 XOR 线性基 第k小异或和
题目链接 题意 给定\(n\)个数,对其每一个子集计算异或和,求第\(k\)小的异或和. 思路 先求得线性基. 同上题,转化为求其线性基的子集的第k小异或和. 结论 记\(n\)个数的线性基为向量组\ ...
- HDU 3949 XOR ——线形基 高斯消元
[题目分析] 异或空间的K小值. 高斯消元和动态维护线形基两种方法都试了试. 动态维护更好些,也更快(QAQ,我要高斯消元有何用) 高斯消元可以用来开拓视野. 注意0和-1的情况 [代码] 高斯消元 ...
- HDU 3949 XOR(高斯消元搞基)
HDU 3949 XOR pid=3949" target="_blank" style="">题目链接 题意:给定一些数字,问任取几个异或值第 ...
- HDU 3949 XOR [高斯消元XOR 线性基]
3949冰上走 题意: 给你 N个数,从中取出若干个进行异或运算 , 求最后所有可以得到的异或结果中的第k小值 N个数高斯消元求出线性基后,设秩为$r$,那么总共可以组成$2^r$中数字(本题不能不选 ...
- HDU 3949 XOR (线性基第k小)题解
题意: 给出\(n\)个数,求出子集异或第\(k\)小的值,不存在输出-1. 思路: 先用线性基存所有的子集,然后对线性基每一位进行消元,保证只有\(d[i]\)的\(i\)位存在1,那么这样变成了一 ...
- ACM学习历程—HDU 3949 XOR(xor高斯消元)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 题目大意是给n个数,然后随便取几个数求xor和,求第k小的.(重复不计算) 首先想把所有xor的 ...
随机推荐
- Linux 搭建 SVN
一.yum 安装 subversion yum -y install subversion 二.创建svn版本库所在路径(建议放在opt.usr.home下) mkdir -p /usr/local/ ...
- JavaScript返回顶部特效
样式: <style type="text/css"> /*返回顶部特效*/ a { border: none; text-decoration: none; outl ...
- 2018-2019-2 20165114《网络对抗技术》Exp3 免杀原理与实践
Exp3 免杀原理与实践 目录 一.实验内容 二.基础问题回答 (1)杀软是如何检测出恶意代码的? (2)免杀是做什么? (3)免杀的基本方法有哪些? 三.实践过程记录 正确使用msf编码器,msfv ...
- Book Review of “The practice of programming” (Ⅱ)
The practice of programming Chapter 2 Algorithms and Data Structures Searching sequential search (li ...
- React Native 常用学习链接地址
Android Studio下载http://www.android-studio.org/ 第二章:Android Studio概述(一)http://ask.android-studio.org/ ...
- Spring核心技术AOP实现原理
关于Spring的AOP也是Spring的非常重要的一项技术.大致上可以这样说,面向切面编程,它的出现说明可以在不修改代码的情况下实现对功能的增强.而增强就是给一个方法增加一些功能.AOP主要思想就是 ...
- [国家集训队2011]happiness
Description 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友 ...
- Android--第三方控件--okHttp
Android中有很多的第三方控件,其中OkHttp是一个很强大的用于网络加载的第三方框架,当然了,它的内部也是使用原生的代码封装好的.今天我们就来看一下OkHttp的简单用法: 说到网络请求,肯定就 ...
- angularjs跨域post解决方案
转自:http://www.thinksaas.cn/topics/0/34/34536.html 前端同学李雷和后台同学韩梅梅分别在自己电脑上进行开发,后台接口写好的时候,李雷改动完就把前端代码上传 ...
- css3+jQuery实现按钮水波纹效果
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta name ...