容易想到设f[i][j][k]为i~j区间以k为根是否能构成bst。这样是O(n4)的。考虑将状态改为f[i][j][0/1]表示i~j区间以i-1/j+1为根能否构成bst。显然如果是i-1作为根的话i~j区间都在它的右子树,所以转移时枚举右子树的根并判断是否合法,j+1类似。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 710
int n,a[N];
bool flag[N][N],f[N][N][];
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("d.in","r",stdin);
freopen("d.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
if (gcd(a[i],a[j])>) flag[i][j]=;
for (int i=;i<=n+;i++) f[i][i-][]=f[i][i-][]=;
for (int k=;k<=n;k++)
for (int i=;i<=n-k+;i++)
{
int j=i+k-;
for (int d=i;d<=j;d++)
if (f[i][d-][]&&f[d+][j][])
{
if (flag[i-][d]) f[i][j][]=;
if (flag[j+][d]) f[i][j][]=;
}
}
for (int i=;i<=n;i++) if (f[][i-][]&&f[i+][n][]) {cout<<"Yes";return ;}
cout<<"No";
return ;
}

Codeforces 1025D(区间dp)的更多相关文章

  1. Recovering BST CodeForces - 1025D (区间dp, gcd)

    大意: 给定$n$个数, 任意两个$gcd>1$的数间可以连边, 求是否能构造一棵BST. 数据范围比较大, 刚开始写的$O(n^3\omega(1e9))$竟然T了..优化到$O(n^3)$才 ...

  2. CodeForces 512B(区间dp)

    D - Fox And Jumping Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64 ...

  3. codeforces 1140D(区间dp/思维题)

    D. Minimum Triangulation time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  4. Timetable CodeForces - 946D (区间dp)

    大意: n天, 每天m小时, 给定课程表, 每天的上课时间为第一个1到最后一个1, 一共可以逃k次课, 求最少上课时间. 每天显然是独立的, 对每天区间dp出逃$x$次课的最大减少时间, 再对$n$天 ...

  5. Codeforces 1114D(区间DP)

    题面 传送门 分析 法1(区间DP): 首先,我们可以把连续的相等区间缩成一个数,用unique来实现,不影响结果 {1,2,2,3,3,3,5,3,4}->{1,2,3,5,3,4} 先从一个 ...

  6. CodeForces - 1107E 区间DP

    和紫书上的Blocks UVA - 10559几乎是同一道题,只不过是得分计算不同 不过看了半天紫书上的题才会的,当时理解不够深刻啊 不过这是一道很好区间DP题 细节看代码 #include<c ...

  7. CodeForces 149D 区间DP Coloring Brackets

    染色有三个条件: 对于每个点来说要么不染色,要么染红色,要么染蓝色 对于每对配对的括号来说,有且只有一个一边的括号被染色 相邻的括号不能染成相同的颜色 首先可以根据给出的括号序列计算出括号的配对情况, ...

  8. Zuma CodeForces - 607B (区间DP)

    大意: 给定字符串, 每次删除一个回文子串, 求最少多少次删完. #include <iostream> #include <cstdio> #define REP(i,a,n ...

  9. Codeforces 940 区间DP单调队列优化

    A #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #def ...

  10. CodeForces - 1025D: Recovering BST (区间DP)

    Dima the hamster enjoys nibbling different things: cages, sticks, bad problemsetters and even trees! ...

随机推荐

  1. 北京Uber优步司机奖励政策(1月20日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  2. fastjson处理json

    返回主页 你是风儿 博客园首页新随笔联系订阅管理 随笔 - 29 文章 - 0 评论 - 23 FastJson对于JSON格式字符串.JSON对象及JavaBean之间的相互转换 fastJson对 ...

  3. cocos2d-x3.7 cclabel文字破碎,异常,变乱

    效果图如下: 无论是按钮(control button),还是普通的label都有小概率出现这种情况. 该问题发现于cocos2d-x3.7 原因: 在3.x中使用ttfconfig创建的label, ...

  4. serv-u自动停止的解决方法

    在主界面serv-u管理控制台-主页--管理服务器----服务器详细信息下,点击“创建,修改并删除服务器事件”找到“事件”右击空白处---“添加”然后如下图所示填写: 点击“保存”就好了,而且我自己也 ...

  5. 抽样分布(2) t分布

    定义 t分布 设X ~ N(0,1),Y ~ χ2(n),且X,Y相互独立,则称随机变量 服从自由度为n的t分布(学生氏分布) 记为 t~t(n),其概率密度为 由于tn(x)是偶函数,其图形关于y轴 ...

  6. leetcode笔记11 First Unique Character in a String

    题目描述: Given a string, find the first non-repeating character in it and return it's index. If it does ...

  7. Elastic stack ——X-Pack安装

    X-Pack是一个Elastic Stack的扩展,将安全,警报,监视,报告和图形功能包含在一个易于安装的软件包中.在Elasticsearch 5.0.0之前,您必须安装单独的Shield,Watc ...

  8. JMeter录制Web脚本

    设置Firefox浏览器代理, 点击右上角的菜单: 点击选项: 点击高级: 点击设置: 点击手动配置代理, 输入本地的IP地址和端口号8888,与JMeter代理服务器的端口号保持一致: 好了,浏览器 ...

  9. 微信小程序navigator跳转失效

    在编写小程序时遇到一个问题:使用 <navigator url='/pages/lists/index'>...</navigator>进行跳转没有反应.控制台也没有报错,ap ...

  10. Java进阶知识点:不要只会写synchronized - JDK十大并发编程组件总结

    一.背景 提到Java中的并发编程,首先想到的便是使用synchronized代码块,保证代码块在并发环境下有序执行,从而避免冲突.如果涉及多线程间通信,可以再在synchronized代码块中使用w ...