题目描述

有一个球形空间产生器能够在 nn 维空间中产生一个坚硬的球体。现在,你被困在了这个 nn 维球体中,你只知道球面上 n+1n+1 个点的坐标,你需要以最快的速度确定这个 nn 维球体的球心坐标,以便于摧毁这个球形空间产生器。

输入输出格式

输入格式:

第一行是一个整数 nn (1<=N=10)(1<=N=10) 。接下来的 n+1n+1 行,每行有 nn 个实数,表示球面上一点的 nn 维坐标。每一个实数精确到小数点后 66 位,且其绝对值都不超过 2000020000 。

输出格式:

有且只有一行,依次给出球心的 nn 维坐标( nn 个实数),两个实数之间用一个空格隔开。每个实数精确到小数点后 33 位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

输入输出样例

输入样例#1:

2
0.0 0.0
-1.0 1.0
1.0 0.0
输出样例#1:

0.500 1.500

说明

提示:给出两个定义:

    1. 球心:到球面上任意一点距离都相等的点。
    2. 距离:设两个n为空间上的点A, B的坐标为 (a_1, a_2, \cdots , a_n), (b_1, b_2, \cdots , b_n)(a1​,a2​,⋯,an​),(b1​,b2​,⋯,bn​) ,则AB的距离定义为: dist = \sqrt{ (a_1-b_1)^2 + (a_2-b_2)^2 + \cdots + (a_n-b_n)^2 }dist=(a1​−b1​)2+(a2​−b2​)2+⋯+(an​−bn​)2​

Solution:

  我们所求的是$n$维的球心坐标,可以肯定的是$\forall i,i\in[1,n+1]$,都有$\sum\limits_{j=1}^{j\leq n}{(o_j-x_{ij})^2}=R^2$其中$o$为圆心、$R$是个常数代表半径。

  题目中给了$n+1$个这样的式子,我们相邻的两式相减,就能得到$n$个消去了$R$的等式$\sum\limits_{j=1}^{j\leq n}{[(o_j-x_{ij})^2+(o_j-x_{i+1j})^2]}=0$,展开可以得到$\sum\limits_{j=1}^{j\leq n}{[2*o_j*(x_{ij}-x_{i+1j})]}=\sum\limits_{j=1}^{j\leq n}{(x_{ij}^2-x_{i+1j}^2)}$,等式左边我们直接作为$n$个$n$元方程,右边就是每个方程所对应的常数。

  处理出这个$n$元方程组,直接高斯消元求解就好了。

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,now;
double a[N][N],b[N][N]; int main(){
scanf("%d",&n);
For(i,,n+) For(j,,n) scanf("%lf",&b[i][j]);
For(i,,n) For(j,,n) {
a[i][j]=*(b[i][j]-b[i+][j]);
a[i][n+]+=(b[i][j]*b[i][j]-b[i+][j]*b[i+][j]);
}
For(i,,n) {
now=i;
For(j,i+,n) if(fabs(a[j][i])>fabs(a[now][i]))now=j;
if(now!=i) For(j,i,n+) swap(a[now][j],a[i][j]);
For(k,i+,n){
double t=a[k][i]/a[i][i];
For(j,i,n+) a[k][j]-=a[i][j]*t;
}
}
Bor(i,,n){
For(j,i+,n) a[i][n+]-=a[j][n+]*a[i][j];
a[i][n+]/=a[i][i];
}
For(i,,n) printf("%.3lf ",a[i][n+]);
return ;
}

P4035 [JSOI2008]球形空间产生器的更多相关文章

  1. 洛谷P4035 [JSOI2008]球形空间产生器(高斯消元)

    洛谷题目传送门 球啊球 @xzz_233 qaq 高斯消元模板题,关键在于将已知条件转化为方程组. 可以发现题目要求的未知量有\(n\)个,题目却给了我们\(n+1\)个点的坐标,这其中必有玄机. 由 ...

  2. [洛谷P4035][JSOI2008]球形空间产生器

    题目大意:给你$n$个点坐标,要你求出圆心 题解:随机化,可以随机一个点当圆心,然后和每个点比较,求出平均距离$r$,如果到这个点的距离大于$r$,说明离这个点远了,就给圆心施加一个向这个点的力:若小 ...

  3. luogu P4035 [JSOI2008]球形空间产生器

    [返回模拟退火略解] 题目描述 今有 n+1n+1n+1 个 nnn 维的点,它们都在一个球上.求它们所在球的球心. Solution 4035\text{Solution 4035}Solution ...

  4. P4035 [JSOI2008]球形空间产生器 (向量,高斯消元)

    题面 有一个 n n n 维球,给定 n + 1 n+1 n+1 个在球面上的点,求球心坐标. n ≤ 10 n\leq 10 n≤10 . 题解 好久以前的题了,昨天首 A . n n n 太小了! ...

  5. 【bzoj1013】[JSOI2008]球形空间产生器sphere

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4530  Solved: 2364[Subm ...

  6. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  7. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

  8. bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3584  Solved: 1863[Subm ...

  9. 线性代数(高斯消元):JSOI2008 球形空间产生器sphere

    JSOI2008 球形空间产生器sphere [题目描述] 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确 ...

随机推荐

  1. JS学习 用 arguments 对象模拟函数重载

    用 arguments 对象判断传递给函数的参数个数,即可模拟函数重载: function doAdd() { if(arguments.length == 1) { alert(arguments[ ...

  2. VueJs 学习笔记

    VueJs学习笔记 参考资料:https://cn.vuejs.org/ 特效库:TweenJS(补间动画库)  VelocityJS(轻量级JS动画库) Animate.css(CSS预设动画库) ...

  3. 图的基本算法(BFS和DFS)

    图是一种灵活的数据结构,一般作为一种模型用来定义对象之间的关系或联系.对象由顶点(V)表示,而对象之间的关系或者关联则通过图的边(E)来表示. 图可以分为有向图和无向图,一般用G=(V,E)来表示图. ...

  4. ACID、数据库隔离级别

    ACID: A(Atomicity):原子性,要么全部执行,要么都不执行 C(consistency):一致性: 特点: 1.一个操作除法级联,这些必须成功,否则全部失败(原子性) 2.所有节点同步更 ...

  5. selenium(Java)WebDriverWait等待机制

    //标题是不是“百度一下,你就知道” 18 new WebDriverWait(driver,5).until(ExpectedConditions.titleIs("百度一下,你就知道&q ...

  6. redis集群搭建(伪集群)

    1.准备工作 去官网下载好你想要安装的redis版本,下载链接 2.搭建步骤 输入命令yum install gcc-c++安装好gcc环境,将下载好的redis安装包上传到 /usr/local 解 ...

  7. (原)HUD绘画贴图解析

    @小道:临时存放       1\主过程 说明: a\调用DrawTextureSimple时,会将UTexure封装成CavarsItem, 若是正交投射函数执行双,最后CavarsItem.Dra ...

  8. eos教程如何创建eos测试账号并且使用scatter插件

    EOS代币租赁平台 --- Chintai平台已经在Jungle测试网络上部署了,欢迎大家来体验. 地址见: Chintai 公测版 官网是: Chintai 目前测试网络上面需要用到Scatter插 ...

  9. [leetcode-658-Find K Closest Elements]

    Given a sorted array, two integers k and x, find the k closest elements to x in the array. The resul ...

  10. es6从零学习(一)let 和 const 命令

    es6从零学习(一):let 和 const 命令 一:let 变量 1.块级作用域{}:let只在自己的块级作用域内有效. for(let i =0;i<3;i++) { console.lo ...