题目

CF961G

前置

斯特林数\(\Longrightarrow\)斯特林数及反演总结

做法

相信大家能得出一个一眼式:$$Ans=\sum\limits_{i=1}^n w_i\sum\limits_{s=1}^n s\cdot C_{n-1}^{s-1}\begin{Bmatrix}k-1\n-s\end{Bmatrix}$$

然后就开始推式:

\[\begin{aligned}\\
Sum&=\sum\limits_{s=1}^n s\cdot C_{n-1}^{s-1}\begin{Bmatrix}n-s\\k-1\end{Bmatrix}\\
&=\sum\limits_{s=1}^n s\cdot C_{n-1}^{s-1}\sum\limits_{i=0}^{k-1}\frac{(-1)^i}{i!}\frac{(k-i-1)^{n-2}}{(k-i-1)!}\\\
&=\sum\limits_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}\sum\limits_{s=1}^n s\cdot C_{n-1}^{s-1}(k-i-1)^{n-s}\\
&=\sum\limits_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}(\sum\limits_{s=1}^nC_{n-1}^{s-1}(k-i-1)^{n-s}+\sum\limits_{s=1}^n (s-1)C_{n-1}^{s-1}(k-i-1)^{n-s})\\
&=\sum\limits_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}(\sum\limits_{s=1}^nC_{n-1}^{s-1}(k-i-1)^{n-s}+(n-1)\sum\limits_{s=1}^n C_{n-2}^{s-2}(k-i-1)^{n-s})\\
&=\sum\limits_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}((k-i)^{n-1}+(n-1)(k-i)^{n-2})\\
&=\sum\limits_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}(k-i)^{n-2}(k-i+n-1)\\
\end{aligned}\]

然而。。。这。。。比赛的时候能推出这么一大堆式子的**是神仙吧

于是有种更简单的方法:\(|S|\sum w_i\)

我们可以理解为:划分好集合后,每个点都对当前点有\(w_i\)的贡献

自己对自己的贡献显然就是\(\begin{Bmatrix}n\\k\end{Bmatrix}\)

其他点对本身的贡献就是先分好\(k\)个集合,再放进去,\((n-1)\begin{Bmatrix}n-1\\k\end{Bmatrix}\)

\[Ans=\sum\limits_{i=1}^nw_i(\begin{Bmatrix}n\\k\end{Bmatrix}+(n-1)\begin{Bmatrix}n-1\\k\end{Bmatrix})
\]

Code

有关斯特林数及反演的更多姿势\(\Longrightarrow\)点这里

#include<cstdio>
typedef int LL;
const LL mod=1e9+7,maxn=2e5+9;
inline LL Read(){
LL x(0),f(1); char c=getchar();
while(c<'0' || c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0' && c<='9'){
x=(x<<3)+(x<<1)+c-'0'; c=getchar();
}
return x*f;
}
inline LL Pow(LL base,LL b){
LL ret(1);
while(b){
if(b&1) ret=1ll*ret*base%mod; base=1ll*base*base%mod; b>>=1;
}return ret;
}
LL fav[maxn],fac[maxn];
inline LL Get(LL n,LL m){
LL ret(0);
for(LL i=0;i<=m;++i)
ret=1ll*(ret+1ll*(i&1?mod-1:1)*fav[i]%mod*Pow(m-i,n)%mod*fav[m-i]%mod)%mod;
return ret;
}
LL n,sum,k;
LL w[maxn];
int main(){
n=Read(); k=Read();
for(LL i=1;i<=n;++i){
w[i]=Read();
(sum+=w[i])%=mod;
}
fac[0]=fac[1]=1;
for(LL i=2;i<=n;++i) fac[i]=1ll*fac[i-1]*i%mod;
fav[n]=Pow(fac[n],mod-2);
for(LL i=n;i>=1;--i) fav[i-1]=1ll*fav[i]*i%mod;
printf("%d\n",1ll*sum*((1ll*Get(n,k)%mod+1ll*(n-1)*Get(n-1,k)%mod)%mod)%mod);
return 0;
}

CF961G Partitions(第二类斯特林数)的更多相关文章

  1. 【CF961G】Partitions 第二类斯特林数

    [CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...

  2. 【CF961G】Partitions(第二类斯特林数)

    [CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...

  3. CF961G Partitions(第二类斯特林数)

    传送门 对于每一个元素,我们只要能求出它的出现次数\(sum\),那么每个元素的贡献都是一样的,最终的答案为\(sum\times \sum_{i=1}^n w_i\) 那么分别讨论 如果这个元素自己 ...

  4. 【cf961G】G. Partitions(组合意义+第二类斯特林数)

    传送门 题意: 给出\(n\)个元素,每个元素有价值\(w_i\).现在要对这\(n\)个元素进行划分,共划分为\(k\)组.每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\). 最后 ...

  5. 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)

    [BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...

  6. 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)

    [BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...

  7. CF932E Team Work(第二类斯特林数)

    传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...

  8. HDU - 4625 JZPTREE(第二类斯特林数+树DP)

    https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...

  9. 【CF932E】Team Work(第二类斯特林数)

    [CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...

随机推荐

  1. Ubuntu上安装与配置JDK1.8

    Ubuntu上安装与配置JDK1.8 一.下载 下载JDK,由于是Ubuntu. 所以去官网下载tar.gz格式的就可以(ubuntu使用浏览器下载网速比較慢,所以推荐到window上下载好). ht ...

  2. [翻译]创建ASP.NET WebApi RESTful 服务(11)

    本章介绍通过使用Ali Kheyrollahi开发的CacheCow来实现服务器端的缓存.所有代码现在都可以在GitHub上下载. 我们将要实现的缓存方式叫做Conditional Requests, ...

  3. win7系统

    网址:http://www.xitongma.com/Windows7/ 使用方法:http://www.cnblogs.com/henrychan688/p/5223935.html

  4. java io类图(转)

    转载:http://blog.csdn.net/fenglian521/article/details/1324010 Java IO 的类图 拿出来方便大家.Java IO表面上看起来比较乱,有了类 ...

  5. 利用jsonrpc技术包装uiautomator

    昨天一天在网上搜索解决上一篇文章中的exception: monkeyrunner内置uiautomator出错的原因 尽管没找到解决办法.可是让我无意中发现了一个好工具,比sl4a更好用的工具.直接 ...

  6. iOS开发之--Mac终端命令大全

    目录操作 命令名 功能描述 使用举例 mkdir 创建一个目录 mkdir dirname rmdir 删除一个目录 rmdir dirname mvdir 移动或重命名一个目录 mvdir dir1 ...

  7. IOS开发报错之Undefined symbols for architecture armv6

    本文转载至  http://blog.csdn.net/sanpintian/article/details/7575434 今天在项目中引入SVSegmentedControl.h/.my以及SVS ...

  8. window 计算机 开启事务

    window 操作系统如何开启事务 c#开发中使用事务调试程序的时候必须开启本地计算机的事务,如何开启呢: 1:控制面板 2:组件服务 3:本地DTC 4:设置 5:应用成功.

  9. maven pom.xml常用标签 Exclusions plugins是什么意思

    Exclusions maven的依赖(dependencies)有传递性,为了解决兼容性问题,就用exclusions来排除造成兼容性问题的依赖. 写法如下: 加入项目A依赖项目B,项目B依赖项目C ...

  10. 微信公众号非善意访问的限制 php curl 伪造UA

    w <?php if (strpos($_SERVER['HTTP_USER_AGENT'], 'MicroMessenger') === false) { echo 'www123'; } d ...