1. 什么是贪心算法?
  贪心算法,又称贪婪算法(Greedy Algorithm),是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优解出发来考虑,它所做出的仅是在某种意义上的局部最优解。
  贪婪算法是一种分阶段的工作,在每一个阶段,可以认为所做决定是最好的,而不考虑将来的后果。这种“眼下能够拿到的就拿”的策略是这类算法名称的来源。
  贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。所以对所采用的贪心策略一定要仔细分析其是否满足无后效性。

二、贪心算法的基本思路:
1. 建立数学模型来描述问题。
2. 把求解的问题分成若干个子问题。
3. 对每一子问题求解,得到子问题的局部最优解。
4. 把子问题的解局部最优解合成原来解问题的一个解。

三、贪心算法适用的问题
  贪心策略适用的前提是:局部最优策略能导致产生全局最优解。也就是当算法终止的时候,局部最优等于全局最优。

四、贪心算法的实现框架
从问题的某一初始解出发;
while (能朝给定总目标前进一步)
{
利用可行的决策,求出可行解的一个解元素;
}
由所有解元素组合成问题的一个可行解;

五、贪心策略的选择
  因为用贪心算法只能通过解局部最优解的策略来达到全局最优解,因此,一定要注意判断问题是否适合采用贪心算法策略,找到的解是否一定是问题的最优解。
如果确定可以使用贪心算法,那一定要选择合适的贪心策略;

、贪心算法的几个例子

1. 纸币找零问题

假设1元、2元、5元、10元、20元、50元、100元的纸币,张数不限制,现在要用来支付K元,至少要多少张纸币?

很显然,我们很容易就想到使用贪心算法来解决,并且我们所根据的贪心策略是,每一步尽可能用面值大的纸币即可。当然这是正确的,代码如下:

/**
* 钱币找零问题
*
* @param money the money
*/
public static void greedyGiveMoney(int money) {
System.out.println("需要找零: " + money);
int[] moneyLevel = {1, 5, 10, 20, 50, 100};
for (int i = moneyLevel.length - 1; i >= 0; i--) {
int num = money/ moneyLevel[i];
int mod = money % moneyLevel[i];
money = mod;
if (num > 0) {
System.out.println("需要" + num + "张" + moneyLevel[i] + "块的");
}
}
}

(1)如果不限制纸币的金额,那这种情况还适合用贪心算法么。比如1元,2元,3元,4元,8元,15元的纸币,用来支付K元,至少多少张纸币?

经我们分析,这种情况是不适合用贪心算法的,因为我们上面提供的贪心策略不是最优解。比如,纸币1元,5元,6元,要支付10元的话,按照上面的算法,至少需要1张6元的,4张1元的,而实际上最优的应该是2张5元的。

(2)如果限制纸币的张数,那这种情况还适合用贪心算法么。比如1元10张,2元20张,5元1张,用来支付K元,至少多少张纸币?

同样,仔细想一下,就知道这种情况也是不适合用贪心算法的。比如1元10张,20元5张,50元1张,那用来支付60元,按照上面的算法,至少需要1张50元,10张1元,而实际上使用3张20元的即可;

(3)所以贪心算法是一种在某种范围内,局部最优的算法。

2. 背包问题: 
有一个背包,背包容量是W=150。有7个物品,每个物品有各自的重量和价值,每个物品有一件。要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G 
重量 35 30 60 50 40 10 25 
价值 10 40 30 50 35 40 30

我们很容易想到使用贪心算法来解决这个问题,那我们考虑一下贪心策略:

(1)每次挑选价值最大的物品放入背包,得到的结果是否最优?

(2)每次挑选所占重量最小的物品放入背包,得到的结果是否最优?

(3)每次选取单位重量价值最大的物品,得到的结果是否最优?

值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。但可惜的是,它需要证明后才能真正运用到题目的算法中。

而上面的3中贪心策略,都是无法成立的,即无法被证明的:

 
   

第一条和第二条类似,第三条,选取单位重量价值最大的物品:

 
   

以上问题使用贪心算法是解决不了的,而普通背包问题可以使用贪心算法来解决。这个问题是属于0-1背包问题,不过我们可以考虑使用动态规划来解决,那就是另一个问题了。

普通背包问题和0-1背包问题差不多,0-1背包的每件物品只有一件,而普通背包的每件物品数量是不止一件的,如果每件物品的数量是无限的,那这种称为完全背包问题;

参考自:http://blog.csdn.net/wang704987562/article/details/70991590

和《数据结构与算法分析 Java语音描述》

Java-贪心算法的更多相关文章

  1. Java 算法(一)贪心算法

    Java 算法(一)贪心算法 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 一.贪心算法 什么是贪心算法?是指在对问题进行求 ...

  2. 基于贪心算法求解TSP问题(JAVA)

    概述 前段时间在搞贪心算法,为了举例,故拿TSP来开刀,写了段求解算法代码以便有需之人,注意代码考虑可读性从最容易理解角度写,没有优化,有需要可以自行优化! 详细 代码下载:http://www.de ...

  3. Java蓝桥杯——贪心算法

    贪心算法 贪心算法:只顾眼前的苟且. 即在对问题求解时,总是做出在当前看来是最好的选择 如买苹果,专挑最大的买. 最优装载问题--加勒比海盗 货物重量:Wi={4,10,7,11,3,5,14,2} ...

  4. 算法(Java实现)—— 贪心算法

    贪心算法 应用场景-集合覆盖问题 假设在下面需要付费的广播台,以及广播台新型号可以覆盖的地区,如何选择最少的广播台,让所有地区都可以接收到信号 广播台 覆盖地区 k1 北京.上海.天津 k2 广州.北 ...

  5. 《Java算法》贪心算法

    贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解. 贪心算法的经典案例: 跳跃游戏: 给定一个非负整 ...

  6. HDU2037 今年暑假不AC 贪心算法

    贪心算法 : 贪心算法就是只考虑眼前最优解而忽略整体的算法, 它所做出的仅是在某种意义上的局部最优解, 然后通过迭代的方法相继求出整体最优解. 但是不是所有问题都可以得到整体最优解, 所以选择贪心策略 ...

  7. HDOJ 1330 Deck(叠木块-物理题啊!贪心算法用到了一点)

    Problem Description A single playing card can be placed on a table, carefully, so that the short edg ...

  8. HDU 4726 Kia's Calculation (贪心算法)

    Kia's Calculation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...

  9. 剑指Offer——贪心算法

    剑指Offer--贪心算法 一.基本概念 所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解.虽然贪心算法不能对 ...

  10. 贪心算法----区间选点问题(POJ1201)

    题目: 题目的大致意思是,给定n个闭区间,并且这个闭区间上的点都是整数,现在要求你使用最少的点来覆盖这些区间并且每个区间的覆盖的点的数量满足输入的要求点覆盖区间的数量. 输入: 第一行输入n,代表n个 ...

随机推荐

  1. [BZOJ5339] [TJOI2018]教科书般的亵渎

    题目链接 BZOJ题面. 洛谷题面. Solution 随便推一推,可以发现瓶颈在求\(\sum_{i=1}^n i^k\),关于这个可以看看拉格朗日插值法. 复杂度\(O(Tm^2)\). #inc ...

  2. ARC077C pushpush 递推

    ---题面--- 题解: 貌似一般c题都是递推... 观察到最后一个插入的数一定在第一个,倒数第二个插入的数一定在倒数第一个,倒数第三个插入的数一定在第2个,倒数第四个插入的数一定在倒数第2个…… O ...

  3. LOJ2587:[APIO2018]铁人两项——题解

    https://loj.ac/problem/2587#submit_code (题面来自LOJ) 考试时候发觉树很可做,并且写了一个dp骗到了树的分. 苦于不会圆方树……现在回来发现这题还是很可做的 ...

  4. [Leetcode] combination sum ii 组合之和

    Given a collection of candidate numbers ( C ) and a target number ( T), find all unique combinations ...

  5. 【链表】在O(1)的时间删除链表的节点

    /** * 在O(1)的时间删除链表的节点 * * @author * */ public class Solution { public static void deleteNode(Node he ...

  6. bzoj 2124 等差子序列 树状数组维护hash+回文串

    等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 1919  Solved: 713[Submit][Status][Discuss] Desc ...

  7. Difference between List View and DataGrid in WPF

    Well, in WPF the difference between ListView and DataGrid is just one. Editing. You need editing use ...

  8. log4j输出到数据库(输出自定义参数、分级保存)

    转载自:http://wallimn.iteye.com/blog/1525819 Log4J日志输出到数据库中,且保存些用户自定义的参数,如用户ID,且配置仅输出指定级别的日志.  配置文件如下:  ...

  9. CSS3 :empty 选择器

    这可是个好东西,我也是这个星期才发现的,下面我们来说具体功能. <!DOCTYPE html> <html> <head> <meta charset=&qu ...

  10. python 面试题(2)

    1.Python是如何进行内存管理的? 答:从三个方面来说,一对象的引用计数机制,二垃圾回收机制,三内存池机制 一.对象的引用计数机制 Python内部使用引用计数,来保持追踪内存中的对象,所有对象都 ...