1135: [POI2009]Lyz

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 573  Solved: 280
[Submit][Status][Discuss]

Description

初始时滑冰俱乐部有1到n号的溜冰鞋各k双。已知x号脚的人可以穿x到x+d的溜冰鞋。 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人。xi为负,则代表走了这么多人。 对于每次操作,输出溜冰鞋是否足够。

Input

n m k d ( 1≤n≤200,000 , 1≤m≤500,000 , 1≤k≤10^9 , 0≤d≤n ) ri xi ( 1≤i≤m, 1≤ri≤n-d , |xi|≤10^9 )

Output

对于每个操作,输出一行,TAK表示够 NIE表示不够。

Sample Input

4 4 2 1
1 3
2 3
3 3
2 -1

Sample Output

TAK
TAK
NIE
TAK
 
题解:
   可以转换一下模型,每个人都有鞋穿不就等价于二分图存在完美匹配。
   根据hall定理,对于一个二分图,设左边有n个点,右边有m个点,则左边n个点
   能完全匹配的充要条件是:对于1<=i<=n,左面任意i个点,都至少有i个右面的点与它相连
   hall定理很容易理解,然后后面我就直接贴别人的了。
   

 #include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<iostream> #define ll long long
#define N 200007 #define Wb putchar(' ')
#define We putchar('\n')
#define rg register int
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
inline void write(int x)
{
if(x<) putchar('-'),x=-x;
if (x==) putchar();
int num=;char c[];
while(x) c[++num]=(x%)+,x/=;
while(num) putchar(c[num--]);
} int n,m,k,d;
struct seg
{
struct node
{
ll ls,rs,ss,sum;
node(){ls=rs=ss=sum=;}
}t[N<<];
#define lson i<<1,l,mid
#define rson i<<1|1,mid+1,r
#define L i<<1
#define R i<<1|1
void update(int i)
{
t[i].ls=max(t[L].ls,t[L].sum+t[R].ls);
t[i].rs=max(t[R].rs,t[R].sum+t[L].rs);
t[i].ss=max(t[L].ss,t[R].ss);
t[i].ss=max(t[i].ss,t[L].rs+t[R].ls);
t[i].sum=t[L].sum+t[R].sum;
}
void Add(int i,int l,int r,int ps,ll d)
{
if(l==r){t[i].ls+=d;t[i].rs+=d;t[i].ss+=d;t[i].sum+=d;return;}
int mid=(l+r)>>;
if(ps<=mid)Add(lson,ps,d);
else Add(rson,ps,d);
update(i);
}
#undef lson
#undef rson
#undef L
#undef R
}T; int main()
{
n=read(),m=read(),k=read(),d=read();
for(int i=;i<=n;i++)T.Add(,,n,i,-k);
while(m--)
{
int r=read(),x=read();
T.Add(,,n,r,x);
puts(T.t[].ss<=(ll)d*k?"TAK":"NIE");
}
}

bzoj 1135 [POI2009]Lyz 线段树+hall定理的更多相关文章

  1. BZOJ1135:[POI2009]Lyz(线段树,Hall定理)

    Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负,则代表走了这么多人 ...

  2. [BZOJ 1135][POI2009]Lyz

    [BZOJ 1135][POI2009]Lyz 题意 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的 ...

  3. 【BZOJ1135】[POI2009]Lyz 线段树

    [BZOJ1135][POI2009]Lyz Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了x ...

  4. 【BZOJ2138】stone(线段树+hall定理)

    传送门 题意: 现在有\(n\)堆石子,每堆石子有\(a_i\)个. 之后会有\(m\)次,每次选择\([l,r]\)的石子堆中的石子扔\(k\)个,若不足,则尽量扔. 现在输出\(1\)~\(m\) ...

  5. 1135: [POI2009]Lyz

    1135: [POI2009]Lyz https://lydsy.com/JudgeOnline/problem.php?id=1135 分析: hall定理+线段树连续区间的最大的和. 首先转化为二 ...

  6. Bzoj 2752 高速公路 (期望,线段树)

    Bzoj 2752 高速公路 (期望,线段树) 题目链接 这道题显然求边,因为题目是一条链,所以直接采用把边编上号.看成序列即可 \(1\)与\(2\)号点的边连得是. 编号为\(1\)的点.查询的时 ...

  7. BZOJ 1135 P3488 LYZ-Ice Skates 线段树+Hall

    https://www.luogu.org/problem/P3488 根据Hall定理 左边任意一个区间L-R a[i]的和sum[l~r] 都要<= (R-L+1+d)*K 把(R-L+1) ...

  8. 【题解】 bzoj1135: [POI2009]Lyz (线段树+霍尔定理)

    题面戳我 Solution 二分图是显然的,用二分图匹配显然在这个范围会炸的很惨,我们考虑用霍尔定理. 我们任意选取穿\(l,r\)的号码鞋子的人,那么这些人可以穿的鞋子的范围是\(l,r+d\),这 ...

  9. 【BZOJ】1135: [POI2009]Lyz

    题意 有\(1\)到\(n(1 \le n \le 200000)\)号的溜冰鞋各\(k(1 \le k \le 10^9)\)双.已知\(x\)号脚的人可以穿\(x\)到\(x+d\)的溜冰鞋. 有 ...

随机推荐

  1. VMWare Workstation新装CentOS 7无法联网解决办法

    按照这位博主的方法成功解决:http://blog.csdn.net/deniro_li/article/details/54632949

  2. 洪水!(Flooded! ACM/ICPC World Final 1999,UVa815)

    题目描述:竞赛入门经典的习题4-10 解题思路:1.把各个网格想象成一个数组 2.排序 3.雨水总体积去铺满 //太懒了只写了求海拔 #include <stdio.h> #define ...

  3. Dreamweaver CS5网页制作教程

    说到Dreamweaver这个网页制作神器,不由得想起在学校里上的选修课,那是的我们只知道 table 布局,只知道构建网站最方便的是使用“所见即所得”编辑器.回忆一下,真的是很怀旧啊! 虽说咱现在大 ...

  4. java安装环境变量设置

    1,依次打开:我的电脑-->属性-->高级-->环境变量 2,设置用户变量 新建 JAVA_HOME C:\Program Files\Java\j2sdk1.5.0 (JDK的安装 ...

  5. 图的遍历——DFS(邻接矩阵)

    递归 + 标记 一个连通图只要DFS一次,即可打印所有的点. #include <iostream> #include <cstdio> #include <cstdli ...

  6. 实验吧密码学:RSAROLL

    原题: {920139713,19} 704796792 752211152 274704164 18414022 368270835 483295235 263072905 459788476 48 ...

  7. Chrome 的扩展功能

    chrome浏览器修改cookie edit this cookie chrome插件是一款专为谷歌内核浏览器打造的cookie插件,安装谷歌浏览器edit this cookie插件后你就可以在浏览 ...

  8. SQL SERVER技术内幕之3 联接查询

    JOIN表运算符对两个输入表进行操作.联接有三种基本类型:交叉联接.内联接和外联接.这三种联接的区别是它们采用的逻辑查询处理步骤各不相同,每种联接都有一套不同的步骤.交叉联接只有一个步骤----笛卡尔 ...

  9. 网页添加提示音,用setInterval

    如果一条数据通过审核了,修改数据库中一个值,用户怎么异步动态知道自己的记录通过审核了呢,我是通过音乐和提示的方式. 网页中添加如下代码: <style> #notify { positio ...

  10. 按照list中实体类的某一属性排序

    传进一个装有实体类的list public void sort(List<MedicalPracticesDetail> mpdList){ Collections.sort(mpdLis ...