UVA11426
题意:求 n 以内的每两个数的最大公约数gcd(a, b)的和
解题思路:假设m和n 是互质的两个数(m < n),那么gcd(m, n) = 1, 当题目中的 i, j 循环到m,n 时,g += 1,依此,当 i = k*m, j = k*n (k为整数),g += k 。
由此我们可以得出:结果 (g) 的变化是由互质的数变化引起的,所以我们的目的就是先求出 给定范围内的所有的互质的数,然后加上他们的倍数,最后求和即可。
假设和 n 互质的数有 x 个,假设为x(k) (k <= x),那么在 i、j 循环到 x(k)、n 时结果会增加x,循环到(p*x(k), p*n) 时结果就会增加p*x。那么我们用table[i]记录各种x、n 在满足 x*n = i 时会增加多少结果,那么最后我们要输出的就是table[2] + table[3] + ... + table[N]。
其中不得不提的是找 n 以内的与 n 互质的数(也就是求欧拉函数),然后求相应的table[x*n]。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std; typedef long long LL; const int maxv = ;
LL table[maxv]; //打表
int euler[maxv]; // 偶拉函数值 void eul()
{
int i, j;
memset(table, , sizeof(table));
for(i = ; i < maxv; ++i) euler[i] = i;
for(i = ; i < maxv; ++i)
{
if(euler[i] == i) //对每个素数的倍数求欧拉函数表
for(j = i; j < maxv; j += i)
euler[j] = euler[j] / i * (i-); //每遇到一个素数因子,就进行处理
for(j = ; j*i < maxv; j++)
table[j*i] += j * euler[i]; //j倍
}
for(i = ; i < maxv; ++i)
table[i] += table[i-]; //n的值等于本身的值加上前面的值,因为是求和
} int main()
{
int n;
eul();
while(cin >> n && n)
{
cout << table[n] << endl;
}
return ;
}
参考:http://www.cnblogs.com/staginner/category/320266.html
UVA11426的更多相关文章
- 【UVa11426】GCD - Extreme (II)(莫比乌斯反演)
[UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 ...
- UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
- UVA11426 GCD - Extreme (II) —— 欧拉函数
题目链接:https://vjudge.net/problem/UVA-11426 题意: 求 ∑ gcd(i,j),其中 1<=i<j<=n . 题解:1. 欧拉函数的定义:满足 ...
- 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568
https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...
- uva11426 gcd、欧拉函数
题意:给出N,求所有满足i<j<=N的gcd(i,j)之和 这题去年做过一次... 设f(n)=gcd(1,n)+gcd(2,n)+......+gcd(n-1,n),那么answer=S ...
- UVA11426 欧拉函数
大白书P125 #include <iostream> #include <cstring> using namespace std; #define MMX 4000010 ...
- uva11426 GCD Extreme(II)
题意:求sum(gcd(i,j),1<=i<j<=n)1<n<4000001 思路: 1.建立递推关系,s(n)=s(n-1)+gcd(1,n)+gcd(2,n)+……+ ...
- uva11426 欧拉函数应用
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=121873#problem/F 题目大意:给你一个数n,让你输出(i=1-> ...
- uva11426(莫比乌斯反演)
传送门:GCD Extreme (II) 题意:给定n(n<=4000000),求G G=0 for(int i=1;i<n;i++) for(int j=i+1;j<=n;j++) ...
- [UVa11426]最大公约数之和——极限版II
题意:给出n,求: \[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\gcd(i,j)\] 多组数据,\(n<=4*10^6\) sol 今天心血来潮再来写一写式子 首先这里 ...
随机推荐
- Laxcus大数据管理系统2.0(12)- 第十章 运行
第十章 运行 本章将介绍一些Laxcus集群基本运行.使用情况,结合图片和表格表示.地点是我们的大数据实验室,使用我们的实验集群.数据来自于我们的合作伙伴,软件平台混合了Windows和Fedora ...
- Ubuntu 常用软件推荐(QQ、微信、MATLAB等)及安装过程
1. Wine QQ QQ 移植到 Linux 一直是一个比较头疼的问题,但我们日常交流.传输文件又离不开这个软件.在网上一番搜寻尝试后,发现最好的替代方案就是 Wine QQ,版本也还比较新,缺点是 ...
- C#调用mingw的so库时无法加载DLL###.so 找不到指定的模块
使用C#调用mingw的so,报了c# 无法加载DLL“###.so”,: 找不到指定的程序. (异常来自 HRESULT:0x8007007E)开始以为是dll路径问题,使用全路径确认正确后仍然无法 ...
- Java标签实现分页
Java实现标签分页 最近为了开发一个网站,里面要用分页功能,但是之前很少自己写分页标签,又不想用现成框架.所以自己参考了些资料,写了个分页例子测试了一下. 代码主要分为三个类: PageTag 分页 ...
- 1.安装CDH5.12.x
安装方式安装前准备安装步骤安装过程修改/etc/hosts设置ssh 互信修改linux 系统设置安装JDK1.8安装python2.7安装mysql/postgreysql数据库安装ntp设置本地y ...
- iscroll手册
概述: 大家在日常工作中最常用的插件是什么,jQurey?Lazyload?但是这些都是在PC端,但是在移动端最常用的插件莫过于iScroll了,iScroll到底是什么东西,应该怎么用?iScrol ...
- php性能优化--opcache
一.OPcache是什么? OPcache通过将 PHP 脚本预编译的字节码存储到共享内存中来提升 PHP 的性能, 存储预编译字节码的好处就是 省去了每次加载和解析 PHP 脚本的开销. PHP 5 ...
- 今年暑假不AC (贪心)
Description “今年暑假不AC?” “是的.” “那你干什么呢?” “看世界杯呀,笨蛋!” “@#$%^&*%...” 确实如此,世界杯来了,球迷的节日也来了,估计很多ACMer也会 ...
- JavaScript初探系列之String的基本操作
1.字符串转换 字符串转换是最基础的要求和工作,你可以将任何类型的数据都转换为字符串,你可以用下面三种方法的任何一种: var myStr = num.toString(); // "19& ...
- JDK源码分析 – ArrayList
ArrayList类的申明 ArrayList是一个支持泛型的,底层通过数组实现的一个可以存任意类型的数据结构,源码中的定义如下: public class ArrayList<E> ex ...