在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习。 理解颇浅,还请大神指点!

  http://blog.codinglabs.org/articles/algorithms-for-cardinality-estimation-part-ii.html

  它的基本处理方法和上篇中用bitmap统计的方法类似,但是最后要用到一个公式:

  说明:m为bitmap总位数,u为0的个数,最后的结果为n的一个估计,且为最大似然估计(MLE)。

  那么问题来了,最大似然估计是什么东东?好像在学概率论的时候听说过,于是又去搜索了一下MLE的信息。

MLE:(此处不使用概率论中的各种符号及表示方法,按我自己的理解写)

  以下内容参考链接:http://blog.csdn.net/yanqingan/article/details/6125812

  假设进行一个实验,实验次数定为10次,每次实验成功率为0.2,那么不成功的概率为0.8,用n来表示成功的次数。

  事件之间是相互独立的,于是可以得到成功次数的概率:

成功次数 0 1 2 3 4 5 6 7 8 9 10
概率 0.107374 0.268435 0.301990 0.201327 0.088080 0.026424 0.005505 0.000786 0.000074 0.000004 0.000000

   以上数据由下述程序计算:

 #include <stdio.h>
#define N 10
#define G 0.2 int factorial(int n)
{
int i;
int ret = ;
for(i = ; i <= n; ++i)
{
ret *= i;
}
return ret;
} double exponent(double m, int n)
{
int i;
double ret = ;
for(i = ; i < n; ++i)
{
ret *= m;
}
return ret;
} double fun(int n)
{
return ((double)factorial(N) / factorial(n) / factorial(N - n) * exponent(G, n) * exponent( - G, N - n));
} int main()
{
int i;
for(i = ; i <= N; ++i)
{
printf("%f\t", fun(i));
}
printf("\n");
}

  用excel做出它的图表

  而所谓概率密度,就是这一个个柱子的面积。公式如下:

  所谓的最大似然估计,就是在已知成功次数n的情况下,求出每次实验成功率的最可能的值。

  假设现已知成功次数为n=7,那么每次的成功概率ω可能是多少呢?

  可以代入式子:

  于是它成了P和ω的方程。

  既然成功次数为7,那么假设n=7时,P有极大值,即求上述方程极大值。借助excel,画出它的方程曲线图:

  即先求导,然后取导数的0点,即为最大可能概率:

  但是这样做又不方便,又容易出错,于是可以借助对数来进行处理:

  这样继续求解是不是方便多了呢?

  现在回到Linear Counting算法(具体一开始头上带^的n是怎么推导的可以查看一下开关的链接,或者“A linear-time probabilistic counting algorithm for database applications”)

  Linear Counting算法中,m是比n小的。我并不知道应该如何描述它,于是按个人的理解举个例子:

  假设一个网站一天有n个不同的人访问,现设一m位的bitmap,将“不同的人”传入哈希函数,传出的结果填入bitmap(可能重复),最后用bitmap中的分布情况来估计n的值。

  引用链接中的一个图:

  每个圈代表一个人,然后用bitmap中的分布情况估计出圈的个数。

  这样的估计是有误差的,所以应该对m的选择考虑一番。

  

结论:Linear Counting算法比直接用bitmap节约了常系数极的空间

Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))的更多相关文章

  1. 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))

    在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...

  2. CRC16算法之二:CRC16-CCITT-XMODEM算法的java实现

    CRC16算法系列文章: CRC16算法之一:CRC16-CCITT-FALSE算法的java实现 CRC16算法之二:CRC16-CCITT-XMODEM算法的java实现 CRC16算法之三:CR ...

  3. JVM-GC算法(二)-复制算法&&标记整理算法

    这次我和各位分享GC最后两种算法,复制算法以及标记/整理算法.上一篇在讲解标记/清除算法时已经提到过,这两种算法都是在此基础上演化而来的,究竟这两种算法优化了之前标记/清除算法的哪些问题呢? 复制算法 ...

  4. 数据结构与算法学习(二)——Master公式及其应用

    本篇文章涉及公式,由于博客园没有很好的支持,建议移步我的CSDN博客和简书进行阅读. 1. Master公式是什么? 我们在解决算法问题时,经常会用到递归.递归在较难理解的同时,其算法的复杂度也不是很 ...

  5. Opencv算法学习二

    1.直方图:图片中像素值分布情况的坐标图. 直方图均衡化:按一定规律拉伸像素值,提高像素值少的点,增加原图的对比度,使人感觉更清晰的函数. equalizeHist( src, dst ); 2.ha ...

  6. 疯子的算法总结(二) STL Ⅰ 算法 ( algorithm )

    写在前面: 为了能够使后续的代码具有高效简洁的特点,在这里讲一下STL,就不用自己写堆,写队列,但是做为ACMer不用学的很全面,我认为够用就好,我只写我用的比较多的. 什么是STL(STl内容): ...

  7. 五大常用算法之二:动态规划算法(DP)

    一.基本概念 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移.一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划. 二.基本思想与策略 基本 ...

  8. 四旋翼基础算法学习2-IMU输入滤波算法

    前言: 处理器读取陀螺仪加速度计数据后首先需要对数据进行滤波处理,此文分析比较几种常用的滤波算法. 参考学习:四轴加速度计滤波 IMU: IMU使用MPU9250(即MPU6500),设置加速度量程± ...

  9. 数据结构&算法(二)_算法基础之前传(递归、时间复杂度、空间复杂度、二分查找)

    什么是算法: 间而言之算法(Algorithm):一个计算过程,解决问题的方法 递归的两个特点: 调用自身 结束条件 递归示例: def func(x): : print("我的小鲤鱼&qu ...

随机推荐

  1. IntelliJ IDEA 如何将一个 filename.java 文件直接运行

    IntelliJ IDEA 如何将一个 filename.java 文件直接运行 前言: ​ 出于考证需要,手头有许多 *.java 文件需要进行运行.然后出于对 JetBrains 全家桶的喜爱,选 ...

  2. 一步一步带你安装史上最难安装的 vim 插件 —— YouCompleteMe

    YouCompleteMe is a fast, as-you-type, fuzzy-search code completion engine for Vim.参考: https://github ...

  3. Spark - 经典案例

    初识 Spark 大数据处理,目前还只是小白阶段,初步搭建起运行环境,慢慢学习之. 本文熟悉下 Spark 数据处理的几个经典案例. 首先将 Scala SDK 的源码导入 IDEA,方便查看和调试代 ...

  4. 浅谈Object.create

    在网上发现了Object.create的用法,感觉很是奇怪,所以学习记录下 var o = Object.create(null); console.log(o); // {} o.name = 'j ...

  5. js 正则表达式(reg)

    一.RegExp对象方法: 1.exec()   检索字符串中指定的值,并返回值(找不到返回null) 效果: <textarea name="content" id=&qu ...

  6. linux 常用命令手册

    命令 功能说明 线上查询及帮助命令(2个) man 查看命令帮助,命令的词典,更复杂的还有info,但不常用. help 查看Linux内置命令的帮助,比如cd命令. 文件和目录操作命令(18个) l ...

  7. WINDOWS SERVER 2012标准版密钥

    Windows Server 2012 R2 安装密钥(只适用安装,不支持激活) 标准版 = NB4WH-BBBYV-3MPPC-9RCMV-46XCB MMPXK-NBJDQ-JPM34-WX3FM ...

  8. Linux环境部署安装Maven

    第一步:Maven下载 1. 手动下载 访问官网:http://maven.apache.org/download.cgi 当前最新版本是3.6.0,如果想下载其他版本 可通过点击下图选中项进入历史更 ...

  9. HDU 5442 后缀自动机(从环字符串选定一个位置 , 时针或顺时针走一遍,希望得到字典序最大)

    http://acm.hdu.edu.cn/showproblem.php?pid=5442 题目大意: 给定一个字符串,可理解成环,然后选定一位置,逆时针或顺时针走一遍,希望得到字典序最大,如果同样 ...

  10. chromedriver for mac