SGU 194 Reactor Cooling(无源无汇上下界可行流)
Description
The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.
Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold: sum(j=1..N, fij) = sum(j=1..N, fji) Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij ≤ cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij ≥ lij.
Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.
Input
Output
题目大意:用n个点,m条有向边,每条边有一个容量的上下界,求一个可行流,要求每个点的入流等于出流。
思路:记f[i] = ∑(u,i) - ∑(i,v),其中∑(u,i)为进入i的所有边的容量下界之和,∑(i,v)为离开i的所有边的容量下界之和。建立源点S汇点T,若f[i] ≥ 0,建一条边S→i,容量为f[i];若f[i] < 0,建一条边i→T,容量为f[i]的绝对值。对每一条边i→j,建一条边i→j,容量为上界减去下界。若最大流能使与S关联的边和与T关联的边都满流,则存在可行流,其中每条边的流量为其下界加上最大流图中的流量,否则不存在可行流。
小证明:上面的构图法乍看之下不知道为什么是对的,网上数学证明一大堆我就不说了(虽然都一样),现在我讲一种比较直观的理解。
对每一条边a→b,容量上界为up,下界为down。从S建一条边到b,容量为down;从a建一条边到T,容量为down;从a到b建一条边,容量为up-down。这样建图,若与S→b,a→T的流量都是满的,那么在原图中,我们就可以把S→b,a→T的流量换成是a→b的流量(a有down的流出,b有down的流入,满足把a有的流出,b有的流入放入边a→b,就满足了边的下界)。
之后,若对每一条边的两个点都建边到源点汇点太浪费了,所以源点S到某点i的边可以合起来,容量为∑(u,i);同样,某点i到汇点T的边也可以合起来,容量为∑(i,v);那么对每一个点i,都有从源点到i的边,从i到汇点的边,因为这两条边直接相连,我们只需要像上面构图所说的方法一样,保留一条就可以了。
代码(15MS):
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std; const int MAXN = ;
const int MAXE = MAXN * MAXN;
const int INF = 0x3fff3fff; struct SAP {
int head[MAXN], gap[MAXN], dis[MAXN], cur[MAXN], pre[MAXN];
int to[MAXE], next[MAXE], flow[MAXE], cap[MAXE];
int n, ecnt, st, ed; void init() {
memset(head, , sizeof(head));
ecnt = ;
} void add_edge(int u, int v, int c) {
to[ecnt] = v; cap[ecnt] = c; flow[ecnt] = ; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; cap[ecnt] = ; flow[ecnt] = ; next[ecnt] = head[v]; head[v] = ecnt++;
//printf("%d->%d %d\n", u, v, c);
} void bfs() {
memset(dis, 0x3f, sizeof(dis));
queue<int> que; que.push(ed);
dis[ed] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
++gap[dis[u]];
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p ^ ] && dis[v] > n) {
dis[v] = dis[u] + ;
que.push(v);
}
}
}
} int Max_flow(int ss, int tt, int nn) {
st = ss, ed = tt, n = nn;
int ans = , minFlow = INF, u;
for(int i = ; i <= n; ++i) {
cur[i] = head[i];
gap[i] = ;
}
u = pre[st] = st;
bfs();
while(dis[st] < n) {
bool flag = false;
for(int &p = cur[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p] > flow[p] && dis[u] == dis[v] + ) {
flag = true;
minFlow = min(minFlow, cap[p] - flow[p]);
pre[v] = u;
u = v;
if(u == ed) {
ans += minFlow;
while(u != st) {
u = pre[u];
flow[cur[u]] += minFlow;
flow[cur[u] ^ ] -= minFlow;
}
minFlow = INF;
}
break;
}
}
if(flag) continue;
int minDis = n - ;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p] > flow[p] && dis[v] < minDis) {
minDis = dis[v];
cur[u] = p;
}
}
if(--gap[dis[u]] == ) break;
++gap[dis[u] = minDis + ];
u = pre[u];
}
return ans;
}
} G; int n, m;
int f[MAXN];
int m_id[MAXE], m_down[MAXE]; int main() {
scanf("%d%d", &n, &m);
G.init();
int a, b, c, d, sum = ;
for(int i = ; i <= m; ++i) {
scanf("%d%d%d%d", &a, &b, &d, &c);
f[a] -= d;
f[b] += d;
m_down[i] = d;
m_id[i] = G.ecnt;
G.add_edge(a, b, c - d);
}
int ss = n + , tt = n + ;
for(int i = ; i <= n; ++i) {
if(f[i] >= ) G.add_edge(ss, i, f[i]), sum += f[i];
else G.add_edge(i, tt, -f[i]);
}
if(G.Max_flow(ss, tt, tt) != sum) {
puts("NO");
return ;
}
puts("YES");
for(int i = ; i <= m; ++i) printf("%d\n", m_down[i] + G.flow[m_id[i]]);
}
SGU 194 Reactor Cooling(无源无汇上下界可行流)的更多相关文章
- sgu 194 Reactor Cooling(有容量上下界的无源无汇可行流)
[题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20757 [题意] 求有容量上下界的无源无汇可行流. [思路] ...
- SGU 176 Flow construction(有源汇上下界最小流)
Description 176. Flow construction time limit per test: 1 sec. memory limit per test: 4096 KB input: ...
- poj2396 Budget(有源汇上下界可行流)
[题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...
- ZOJ 2314 - Reactor Cooling - [无源汇上下界可行流]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 The terrorist group leaded by ...
- zoj 2314 Reactor Cooling (无源汇上下界可行流)
Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 Time Limit: 5 Seconds ...
- ZOJ2314 Reactor Cooling(无源汇上下界可行流)
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear ...
- hdu 4940 Destroy Transportation system (无源汇上下界可行流)
Destroy Transportation system Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 ...
- zoj2314 无源汇上下界可行流
题意:看是否有无源汇上下界可行流,如果有输出流量 题解:对于每一条边u->v,上界high,下界low,来说,我们可以建立每条边流量为high-low,那么这样得到的流量可能会不守恒(流入量!= ...
- 有源汇上下界可行流(POJ2396)
题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...
随机推荐
- jQuery入门简单实现反选与全选
//html代码<input type="checkbox" id= 'all' value="全选"> 选择全部 一键上路 <input t ...
- java8的新特性,Collections.sort(排序的List集合)的使用,对list封装Map里面的某个值进行排序
--------------------------对简单list的排序---------------------------------- List<Integer> list = ne ...
- Ubantu 更新时间方法
1.首先查看时区: swfsadmin@swfsubuntu:~$ date -RTue, 17 Dec 2013 18:23:01 +0800 如果要修改时区,执行sudo tzselect 2.选 ...
- Jquery中菜单的展开和折叠
jquery内容 <script> $(function () { $("dl dt").click(function () { $(this).siblings(). ...
- Thinkphp5 使用composer中seeder播种机
前因: 前几天,客户要求做一个会员问答的系统,我就按流程做了,到了需要调用数据库数据时,觉得一个个添加又有点笨~ 解决过程: 后来查了查手册,看看国外blog案例,我搞出来了个不错的方法~~~ 我的使 ...
- vue的监听键盘事件的快捷方法
在我们的项目经常需要监听一些键盘事件来触发程序的执行,而Vue中允许在监听的时候添加关键修饰符: <input v-on:keyup.13="submit"> 对于一些 ...
- Spring Security学习笔记(一)
认证和权限控制 AuthenticationManager是认证的主要接口,它只有一个authenticate方法,可以做3件事情. 返回一个认证信息(Authentication),表示认证成功 抛 ...
- git 完善使用中
GIT 版本库控制: 第一步:Git 的账号注册 url :https://github.com/ 这是git的官网如果第一次打开会这样 中间红色圈内是注册 内容, 第一项是用户名 第二项是邮箱 第三 ...
- day3-exercise
# Author: 刘佳赐-Isabelle October 28,2018 """ 1. 文件a1.txt内容 序号 部门 人数 平均年龄 备注 1 python 30 ...
- Multimodal Machine Learning:A Survey and Taxonomy 综述阅读笔记
该笔记基于:Multimodal Machine Learning:A Survey and Taxonomy 该论文是一篇对多模态机器学习领域的总结和分类,且发表于2017年,算是相当新的综述了.老 ...