SGU 194 Reactor Cooling(无源无汇上下界可行流)
Description
The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.
Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold: sum(j=1..N, fij) = sum(j=1..N, fji) Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij ≤ cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij ≥ lij.
Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.
Input
Output
题目大意:用n个点,m条有向边,每条边有一个容量的上下界,求一个可行流,要求每个点的入流等于出流。
思路:记f[i] = ∑(u,i) - ∑(i,v),其中∑(u,i)为进入i的所有边的容量下界之和,∑(i,v)为离开i的所有边的容量下界之和。建立源点S汇点T,若f[i] ≥ 0,建一条边S→i,容量为f[i];若f[i] < 0,建一条边i→T,容量为f[i]的绝对值。对每一条边i→j,建一条边i→j,容量为上界减去下界。若最大流能使与S关联的边和与T关联的边都满流,则存在可行流,其中每条边的流量为其下界加上最大流图中的流量,否则不存在可行流。
小证明:上面的构图法乍看之下不知道为什么是对的,网上数学证明一大堆我就不说了(虽然都一样),现在我讲一种比较直观的理解。
对每一条边a→b,容量上界为up,下界为down。从S建一条边到b,容量为down;从a建一条边到T,容量为down;从a到b建一条边,容量为up-down。这样建图,若与S→b,a→T的流量都是满的,那么在原图中,我们就可以把S→b,a→T的流量换成是a→b的流量(a有down的流出,b有down的流入,满足把a有的流出,b有的流入放入边a→b,就满足了边的下界)。
之后,若对每一条边的两个点都建边到源点汇点太浪费了,所以源点S到某点i的边可以合起来,容量为∑(u,i);同样,某点i到汇点T的边也可以合起来,容量为∑(i,v);那么对每一个点i,都有从源点到i的边,从i到汇点的边,因为这两条边直接相连,我们只需要像上面构图所说的方法一样,保留一条就可以了。
代码(15MS):
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std; const int MAXN = ;
const int MAXE = MAXN * MAXN;
const int INF = 0x3fff3fff; struct SAP {
int head[MAXN], gap[MAXN], dis[MAXN], cur[MAXN], pre[MAXN];
int to[MAXE], next[MAXE], flow[MAXE], cap[MAXE];
int n, ecnt, st, ed; void init() {
memset(head, , sizeof(head));
ecnt = ;
} void add_edge(int u, int v, int c) {
to[ecnt] = v; cap[ecnt] = c; flow[ecnt] = ; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; cap[ecnt] = ; flow[ecnt] = ; next[ecnt] = head[v]; head[v] = ecnt++;
//printf("%d->%d %d\n", u, v, c);
} void bfs() {
memset(dis, 0x3f, sizeof(dis));
queue<int> que; que.push(ed);
dis[ed] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
++gap[dis[u]];
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p ^ ] && dis[v] > n) {
dis[v] = dis[u] + ;
que.push(v);
}
}
}
} int Max_flow(int ss, int tt, int nn) {
st = ss, ed = tt, n = nn;
int ans = , minFlow = INF, u;
for(int i = ; i <= n; ++i) {
cur[i] = head[i];
gap[i] = ;
}
u = pre[st] = st;
bfs();
while(dis[st] < n) {
bool flag = false;
for(int &p = cur[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p] > flow[p] && dis[u] == dis[v] + ) {
flag = true;
minFlow = min(minFlow, cap[p] - flow[p]);
pre[v] = u;
u = v;
if(u == ed) {
ans += minFlow;
while(u != st) {
u = pre[u];
flow[cur[u]] += minFlow;
flow[cur[u] ^ ] -= minFlow;
}
minFlow = INF;
}
break;
}
}
if(flag) continue;
int minDis = n - ;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(cap[p] > flow[p] && dis[v] < minDis) {
minDis = dis[v];
cur[u] = p;
}
}
if(--gap[dis[u]] == ) break;
++gap[dis[u] = minDis + ];
u = pre[u];
}
return ans;
}
} G; int n, m;
int f[MAXN];
int m_id[MAXE], m_down[MAXE]; int main() {
scanf("%d%d", &n, &m);
G.init();
int a, b, c, d, sum = ;
for(int i = ; i <= m; ++i) {
scanf("%d%d%d%d", &a, &b, &d, &c);
f[a] -= d;
f[b] += d;
m_down[i] = d;
m_id[i] = G.ecnt;
G.add_edge(a, b, c - d);
}
int ss = n + , tt = n + ;
for(int i = ; i <= n; ++i) {
if(f[i] >= ) G.add_edge(ss, i, f[i]), sum += f[i];
else G.add_edge(i, tt, -f[i]);
}
if(G.Max_flow(ss, tt, tt) != sum) {
puts("NO");
return ;
}
puts("YES");
for(int i = ; i <= m; ++i) printf("%d\n", m_down[i] + G.flow[m_id[i]]);
}
SGU 194 Reactor Cooling(无源无汇上下界可行流)的更多相关文章
- sgu 194 Reactor Cooling(有容量上下界的无源无汇可行流)
[题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20757 [题意] 求有容量上下界的无源无汇可行流. [思路] ...
- SGU 176 Flow construction(有源汇上下界最小流)
Description 176. Flow construction time limit per test: 1 sec. memory limit per test: 4096 KB input: ...
- poj2396 Budget(有源汇上下界可行流)
[题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...
- ZOJ 2314 - Reactor Cooling - [无源汇上下界可行流]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 The terrorist group leaded by ...
- zoj 2314 Reactor Cooling (无源汇上下界可行流)
Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 Time Limit: 5 Seconds ...
- ZOJ2314 Reactor Cooling(无源汇上下界可行流)
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear ...
- hdu 4940 Destroy Transportation system (无源汇上下界可行流)
Destroy Transportation system Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 ...
- zoj2314 无源汇上下界可行流
题意:看是否有无源汇上下界可行流,如果有输出流量 题解:对于每一条边u->v,上界high,下界low,来说,我们可以建立每条边流量为high-low,那么这样得到的流量可能会不守恒(流入量!= ...
- 有源汇上下界可行流(POJ2396)
题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...
随机推荐
- BZOJ2286: [Sdoi2011]消耗战(虚树/树形DP)
Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 5246 Solved: 1978[Submit][Status][Discuss] Descript ...
- 转:AbstractQueuedSynchronizer的介绍和原理分析
引自:http://ifeve.com/introduce-abstractqueuedsynchronizer/ 简介 提供了一个基于FIFO队列,可以用于构建锁或者其他相关同步装置的基础框架.该同 ...
- ps命令 百度+加自己的理解
ps故为process status的缩写,即为进程状态的命令, ps命令详解, 1)ps a 显示现行终端机下的所有程序,包括其他用户的程序.2)ps -A 显示所有程序.3)ps c 列出程序时, ...
- 【读书笔记 - Effective Java】02. 遇到多个构造器参数时要考虑用构建器
类有多个可选参数的解决方案: 1. 重叠构造器模式可行,但是当有许多参数的时候,客户端代码会很难编写,并且仍然较难以阅读. 2. JavaBeans模式,调用一个无参构造器来创造对象,然后调用sett ...
- js函数和window对象
- webpack 优化代码 让代码加载速度更快
一,如何优化webpack构建 (1),缩小文件搜索范围, 优化Loader配置 module.exports = { module: { rules: [ { test:/\.js$/, use:[ ...
- 对布局定位设置-position
使用position属性,会激活5个属性 left right bottom top z-index(-1至999) 注:z-index:会改变内容的层级关系, 1.绝对定位 position: ab ...
- Currency Helper
using System; using Microsoft.Xrm.Sdk; using Microsoft.Crm.Sdk.Messages; /// <summary> /// 货币 ...
- IA64与x86-64的区别
win7 sp1下载地址:https://download.microsoft.com/download/0/A/F/0AFB5316-3062-494A-AB78-7FB0D4461357/wind ...
- 利用主成分分析(PCA)简化数据
一.PCA基础 线性映射(或线性变换),简单的来说就是将高维空间数据投影到低维空间上,那么在数据分析上,我们是将数据的主成分(包含信息量大的维度)保留下来,忽略掉对数据描述不重要的成分.即将主成分维度 ...