Docker内部数据管理和Docker之间的数据共享为数据卷和数据卷容器,实例解析1.将本地的文件作为容器的数据卷,2.数据卷flocker插件实现容器集群(或者Docker Swarm)的数据共享3.数据卷容器作为其他容器的数据卷.降低磁盘开销.4.数据的备份,恢复和迁移.5.Docker hub的常用操作.

1.0.数据卷(Data volumes)

Data volumes是一个或者多个容器特别指定的目录,它区别于联合文件系统的(Union File System,或称UnionFS,通过底层的操作的文件系统,具有轻量级和快速的特性,Docker 容器也是使用联合文件系统去创建数据块的.),并且,对容器的数据管理以及容器之间数据共享提供了以下几点:

- 当容器被创建的同时,数据卷已经被初始化了.当镜像数据在制定的挂载点上时,存在的数据会复制到新的卷上.(但是,如果挂载的是主机路径不适用)

- 容器之间的数据卷可以重用和共享.

- 可以直接更改数据卷

- 镜像更新不会更改数据卷.

- 容器被删除,数据卷不受影响.

1.1.增加一个数据卷

docker createdocker run命令中,使用-v 为容器增加一个数据卷.

wxl@wxl-pc:~$ docker run -d -P --name myweb -v /webapp training/webapp python app.py

可见.把training/webapp命名为myweb,并且通过-v创建了数据卷 /webapp

  • Tip,在Dockerfile创建新的容器时,可以通过-v来创建更多的数据卷.

1.2.查看创建信息

wxl@wxl-pc:~$ docker inspect myweb

其中,Mount信息,包含了刚刚创建的数据卷详细信息.source指定了本机路径,而Destination则指定容器内部路径.

1.3.本机路径作为容器数据卷

将本机的路径如/src/webapp作为volumeweb的数据卷.这样做的好处是,如果本地有代码可很方便在本地修改,在容器里查看修改后的效果.

wxl@wxl-pc:~$ docker run -d -P --name volumeweb -v /src/webapp:/opt/webapp training/webapp python app.py

3206809decc4145427cb1f300d05a55aae88a6fffc33596e773dbd023746e479

#查看
wxl@wxl-pc:~$ docker inspect volumeweb

1.4.设置本地路径的权限,默认是rw读写模式,可以制定能如ro只读模式

wxl@wxl-pc:~$ docker run -d -P --name volumeweb -v /src/webapp:/opt/webapp:ro training/webapp python app.py

仅仅在/src/webapp:/opt/webapp:ro 增加了ro,指明只读模式.

1.5.挂载主机文件作为数据卷

使用-v标志可以挂载单一文件,如将主机的bash_history文件内容,添加至新创建的容器中,此时新创建的容器的bash_history中的记录删除而存上主机bash_history的内容.

wxl@wxl-pc:~$ docker run --rm -it -v ~/.bash_history:/root/.bash_history ubuntu:14.04 /bin/bash

2.flocker插件实现容器集群的数据管理,共享和迁移等.(如果未配置Docker Swarm,建议跳过本步骤)

挂载一个共享数据作为Docker容器的数据卷

容器除了可以在本机上的路径作为数据卷外,还可以通过Docker volume plugins来允许一些共享数据作为数据卷,如iSCSI,NFS或者FC.这样做的好处是,共享的数据卷的位置不受容器的影响,而且只要某个容器拥有volume plugins并且能够访问,就可以将共享数据卷作为该容器的数据卷.

2.1.安装Docker容器卷驱动flocker

数据卷的一个插件,用来管理共享数据,支持容器之间(容器集群)的共享数据进行迁移,打包.

注意:a.最后一步下载flocker插件时,可能因为网速而下载时间很长,建议下载的flocker时跳过.Docker 数据卷flocker插件实现容器集群的数据管理,共享和迁移等.步骤,不影响后续操作.b.本过程需要flocker正确安装,Dcoker集群环境,如果提示没有flocker插件错误,可以跳过本步骤,Docker Swarm不是本次解析重点.

wxl@wxl-pc:~$ sudo apt-get update

wxl@wxl-pc:~$ sudo apt-get -y install apt-transport-https software-properties-common

wxl@wxl-pc:~$ sudo add-apt-repository -y "deb https://clusterhq-archive.s3.amazonaws.com/ubuntu/$(lsb_release --release --short)/\$(ARCH) /"

wxl@wxl-pc:~$ cat <<EOF > /tmp/apt-pref
> Package: *
> Pin: origin clusterhq-archive.s3.amazonaws.com
> Pin-Priority: 700
> EOF wxl@wxl-pc:~$ sudo mv /tmp/apt-pref /etc/apt/preferences.d/buildbot-700 wxl@wxl-pc:~$ sudo apt-get update
#下载速度很慢,根据网速而定.
wxl@wxl-pc:~$ sudo apt-get -y install --force-yes clusterhq-flocker-cli

安装Flocker Node Services(略过,过程繁琐,不再赘述,可以去clusterhq官方文档查看.)

wxl@wxl-pc:~$ docker volume create -d flocker --name my-named-volume -o size=20GB

wxl@wxl-pc:~$ docker run -d -P \
> -v my-named-volume:/opt/webapp \
> --name web training/webapp python app.py

本过程需要flocker正确安装,Dcoker集群环境,如果提示没有flocker插件错误,可以跳过本步骤,Docker Swarm不是本次解析重点.

3.创建一个新的数据卷容器,作为其他应用层容器的数据卷

创建新的数据卷的容器目的是,方便一些持久性(存储)的数据在容器和容器之间共享.

使用postgres镜像创建一个数据卷容器,该容器没有应用运行,所以,其他容器的可以作为应用层,而存储的数据放在数据卷容器中,这样可以节省磁盘空间.

3.1.创建新的数据卷容器dbstore

wxl@wxl-pc:~$ docker create -v /dbdata --name dbstore training/postgres /bin/true

3.2.使用--volumes-from可以将dbdata容器中的数据卷/dbdata挂载到另一个容器中(db1).

wxl@wxl-pc:~$ docker run -d --volumes-from dbstore --name db1 training/postgres

3.3.将dbstore挂载到db2容器中.

docker run -d --volumes-from dbstore --name db2 training/postgres

3.4.通过已经挂载的容器扩展挂载(如,db3通过db1或者db2来挂载dbstore数据卷容器)

如果,删除容器db1或者容器db2,数据卷是不会被删除的,如果在磁盘上删除数据卷,必须显示调用docker rm -v加上数据卷.

3.5.注意,如果删除含有数据卷的容器,在删除容器时没有使用-v标志,这些数据卷会成为dangling状态

a.显示所以没有挂载到容器上的数据卷

docker volume ls -f dangling=true

b.删除这些dangling状态的数据卷

docker volume rm <volume name>

4.0.备份,恢复,迁移数据卷

Docker容器的数据卷备份,恢复,迁移一般是通过--volumes-from标志实现的.

4.1.备份,创建一个新容器,在新容器挂载dbstore数据卷容器,并将dbstore数据卷打包为backup.tar文件,备份至新创建的容器中.

wxl@wxl-pc:~$ docker run --rm --volumes-from dbstore -v $(pwd):/backup ubuntu:14.04 tar cvf /backup/backup.tar /dbdata

4.2.恢复,通过-v标志,将数据恢复到同一个容器或者其他任意容器.

wxl@wxl-pc:~$ docker run -v /dbdata --name dbstore2 ubuntu:14.04 /bin/bash

4.3.迁移,其实就是通过解压方式,将dbstore数据卷容器的数据解压至一个新的容器.

wxl@wxl-pc:~$ docker run --rm --volumes-from dbstore2 -v $(pwd):/backup ubuntu:14.04 bash -c "cd /dbdata && tar xvf /backup/backup.tar --strip 1"

5.Docker Hub常见操作

Docker Hub是Docker官方提供的容器管理工程,类似与github,不同在于在Docker Hub中搜索存放的不是源码而是容器.

Docker Hub可以存放我们创建的容器,如果是公开的则大家都以拿来用,也支持不公开.

5.1.首先注册Docker Hub账号,然后登陆

wxl@wxl-pc:~$ docker login

登陆信息存放在了$HOME/.docker/config.json下.

5.2.查找并下载需要的容器

#查找
wxl@wxl-pc:~$ docker search centos
#下载
wxl@wxl-pc:~$ docker pull centos

5.3.推送到Docker Hub上

使用docker push yourname/newimage来push自己的容器到hub上.

wxl@wxl-pc:~$ docker push mycentos:mydev

实例解析Docker数据卷+数据卷容器+flocker数据共享+DockerHub操作的更多相关文章

  1. Docker容器数据管理(数据卷&数据卷容器)

    一:前言 在Docker容器的实际使用中,经常会遇到容器的数据持久化,容器之间的数据共享等问题,通常我们有两种解决方案: 1)数据卷(Data Volumes):就是将容器内数据直接映射到本地主机环境 ...

  2. Docker网络管理机制实例解析+创建自己Docker网络

    实例解析Docker网络管理机制(bridge network,overlay network),介绍Docker默认的网络方式,并创建自己的网络桥接方式,将开发的容器添加至自己新建的网络,提高Doc ...

  3. 1.docker介绍、命令、容器、镜像、数据卷、Dockerfile、常用软件安装、推送阿里云

    一.docker介绍 1.docker是什么 一款产品从开发到上线,从操作系统,到运行环境,再到应用配置.作为开发+运维之间的协作我们需要关心很多东西,这也是很多互联网公司都不得不面对的问题,特别是各 ...

  4. Docker小白到实战之容器数据卷,整理的明明白白

    前言 上一篇把常用命令演示了一遍,其中也提到容器的隔离性,默认情况下,容器内应用产生的数据都是由容器本身独有,如果容器被删除,对应的数据文件就会跟着消失.从隔离性的角度来看,数据就应该和容器共存亡:但 ...

  5. Docker数据管理(数据卷&数据卷容器)

    生产环境中使用Docker的过程中,往往需要对数据进行持久化,或者需要在多个容器之间进行数据共享,这必然涉及容器的数据管理操作. 容器中管理数据主要有两种方式: 数据卷(Data Volumes):容 ...

  6. 【Docker】利用数据卷容器来备份、恢复、迁移数据卷

    利用数据卷容器来备份.恢复.迁移数据卷 可以利用数据卷对其中的数据进行进行备份.恢复和迁移. 备份 首先使用 --volumes-from 标记来创建一个加载 dbdata 容器卷的容器,并从主机挂载 ...

  7. docker卷挂载与容器内外互相拷贝数据

    一.宿主机与容器的挂载 docker可以支持把一个宿主机上的目录挂载到镜像里.命令如下: docker run -it -v /mydownload:/download nginx:v1 /bin/b ...

  8. Docker系列(16)- 容器数据卷

    什么是容器数据卷 docker的理念回顾 将应用和环境打包成一个镜像 数据?如果数据都在容器中,那么我们容器删除,数据就会丢失!新增一个需求:数据可以持久化 MySQL,容器删了等于删库跑路!新增一个 ...

  9. Docker 基础知识 - 使用卷(volume)管理应用程序数据

    卷(volumes)是 Docker 容器生产和使用持久化数据的首选机制.绑定挂载(bind mounts)依赖于主机的目录结构,卷(volumes)完全由 Docker 管理.卷与绑定挂载相比有几个 ...

随机推荐

  1. mybatis的CRUD实例(三)

    前面的文章我们已经实现了根据id查询用户信息的功能,下面我们进行其他业务功能的实现. 一.根据用户名模糊查询用户列表 查询使用的sql : select * from user where usern ...

  2. Celery 分布式任务队列快速入门 以及在Django中动态添加定时任务

    Celery 分布式任务队列快速入门 以及在Django中动态添加定时任务 转自 金角大王 http://www.cnblogs.com/alex3714/articles/6351797.html ...

  3. js面向对象(一)——封装

    想写这个好久了,自己当时理解这个确实费了一番功夫,现在记录一下,哪怕对读者有一点点帮助,我也很开心,看着不爽大胆喷吧,我脸皮可厚了,闲话不说了,进入正题 ----------------------- ...

  4. docker安装mongo初体验

    1.docker安装在此不做介绍,请自行百度:个人环境是在windows下运行cmd执行docker命令2.打算在docker下安装使用mongo,顺带熟悉docker,拉开篇章3.docker下安装 ...

  5. IIS进程池异常崩溃,导致网站 service unavailable,原因排查与记录。

    昨晚十点钟的样子,网站崩溃,开始 service unavailable,最近开始业务高峰,心里一惊,麻痹肯定进程池又异常崩溃了.又碰到什么问题?上次是因为一个异步线程的问题,导致了进程池直接崩溃,后 ...

  6. MySQL 查询结果分组 group by

    [group by {col_name | position} [ASC | DESC ]] 分组条件 [HAVING where_condition] HAVING 后面的条件必须出现在select ...

  7. MySQL查询操作select

    查找记录 SELECT select_expr [,select_expr ...] [ FROM table_references(表的参照) [WHERE where_condition](条件) ...

  8. IDEA里如何安装Python插件打造开发环境(图文详解)

    前言 python是一种功能强大和适用面很广的开发语言,在大数据应用和机器学习日益流行的年代,python凭借其简洁.易用和可扩展性获得很多用户的支持,近年来使用率高速增长.python环境下,集成了 ...

  9. Light Table 编辑器修改字体 更新

    view->command->use.behaviors 加上这一句  (:lt.objs.style/font-settings "Inconsolata" 14 1 ...

  10. 8086处理器的无条件转移指令——《x86汇编语言:从实模式到保护模式》读书笔记13

    本博文是对原书8.3.10的内容的总结. 一.相对短转移 指令格式是: jmp short 标号 标号也可以替换成具体的数值(标号和数值是等价的),例如 jmp short 0x2000 说明: (1 ...