Educational Codeforces Round 40 F. Runner's Problem
Educational Codeforces Round 40 F. Runner's Problem
题意:
给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) 的方案数 \(mod 1e9 + 7\), 走的规则和限制如下:
From the cell (i, j) you may advance to:
- (i - 1, j + 1) — only if i > 1,
- (i, j + 1), or
- (i + 1, j + 1) — only if i < 3.
给出了$n $个限制 每个限制如下描述
\(a_i, l_i, r_i l_i <= r_i 1<=a_i <= 3\) 表示第\((a_i, l_i)\) 到 \((a_i, ri)\) 都是不可走的
\(n <= 10000 , m <= 10^{18}\)
思路:
考察没有限制的情况, 写出转移矩阵做快速幂即可
\(\begin{bmatrix} 1& 1 &0 \\ 1& 1 &1 \\ 0& 1 &1 \end{bmatrix}\)
那么给定了限制之后,其实就是转移矩阵在某一段内不会发生变化,处理出每一段做快速幂即可。
最开始我处理每一段的方法有点傻逼,将所有的端点按左开右闭的方式排序,然后对于取出的每一段区间判断第1,2,3行在这段区间内是否有障碍,我采用了对每一行的障碍排序,再用指针的方式来判断是否有障碍。
#include<bits/stdc++.h>
#define LL long long
#define P pair<int,int>
using namespace std;
const int mod = 1e9 + 7;
vector<pair<LL,LL> > a[3];
vector<pair<LL,int> >p;
int n, x;
LL m, l, r;
struct MAT{
int a[3][3];
MAT operator*(const MAT &rhs){
MAT ans;
memset(ans.a, 0, sizeof(ans.a));
for(int i = 0;i < 3;i++){
for(int j = 0;j < 3;j++){
for(int k = 0;k < 3;k++){
ans.a[i][j] = (ans.a[i][j] + 1LL * a[i][k] * rhs.a[k][j] % mod) % mod;
}
}
}
return ans;
}
MAT operator^(LL k){
MAT ans, A = *this;
for(int i = 0;i < 3;i++){
for(int j = 0;j < 3;j++) ans.a[i][j] = (i == j?1:0);
}
for(;k;k >>= 1,A = A * A) if(k & 1) ans = ans * A;
return ans;
}
}mat;
int b[3][3];
void init(){
b[0][0] = b[0][1] = 1;
b[1][0] = b[1][1] = b[1][2] = 1;
b[2][1] = b[2][2] = 1;
b[0][2] = b[2][0] = 0;
}
void gao(int row){
for(int i = 0;i < 3;i++) mat.a[row][i] = 0;
}
int main()
{
init();
cin>>n>>m;
for(int i = 0;i < n;i++){
scanf("%d%lld%lld",&x,&l,&r);
a[x - 1].push_back(make_pair(l,r));
p.push_back(make_pair(l - 1, 0));
p.push_back(make_pair(r, 1));
}
p.push_back(make_pair(1,0));
p.push_back(make_pair(m, 1));
sort(p.begin(),p.end());
p.erase(unique(p.begin(),p.end()),p.end());
for(int i = 0;i < 3;i++) sort(a[i].begin(),a[i].end());
LL mxr[3] = {1,1,1};
LL ans[3] = {0,1,0};
int now[3] = {0};
l = p[0].first;
for(int i = 1; i < p.size();i++){
r = p[i].first;
memcpy(mat.a, b, sizeof(b));
for(int j = 0;j < 3;j++){
int &xx = now[j];
while(xx < a[j].size() && a[j][xx].first <= l + 1 &&
(mxr[j] = max(a[j][xx].second,mxr[j])) < r) xx++;
if(xx < a[j].size() && a[j][xx].first <= l + 1 && mxr[j] >= r){
gao(j);
}
}
mat = mat ^ (r - l);
LL tmp[3] = {0};
for(int j = 0;j < 3;j++){
for(int k = 0;k < 3;k++) {
tmp[j] += 1LL * mat.a[j][k] * ans[k] % mod;
tmp[j] %= mod;
}
memcpy(ans, tmp, sizeof(tmp));
l = p[i].first;
}
cout<<ans[1]<<endl;
return 0;
}
实际上存端点的时候 可以把该端点是起点还是终点以及在哪一行存进去,这样就可以单独每一行进行维护。
当某一行遇到一个起点后,意味着该行从这个点开始都是有障碍的,直到遇到一个终点+1 后面才没有障碍,
这样就容易判断的多。
常用的区间标记操作,只是这里一时没有将这个知识用上来,以致于采用前面的做法觉得复杂很多。
#include<bits/stdc++.h>
#define LL long long
#define P pair<int,int>
using namespace std;
const int mod = 1e9 + 7;
int n, x;
LL m, l, r;
struct MAT{
int a[3][3];
MAT operator*(const MAT &rhs){
MAT ans;
memset(ans.a, 0, sizeof(ans.a));
for(int i = 0;i < 3;i++){
for(int j = 0;j < 3;j++){
for(int k = 0;k < 3;k++){
ans.a[i][j] = (ans.a[i][j] + 1LL * a[i][k] * rhs.a[k][j] % mod) % mod;
}
}
}
return ans;
}
MAT operator^(LL k){
MAT ans, A = *this;
for(int i = 0;i < 3;i++){
for(int j = 0;j < 3;j++) ans.a[i][j] = (i == j?1:0);
}
for(;k;k >>= 1,A = A * A) if(k & 1) ans = ans * A;
return ans;
}
};
struct node{
LL x;
int row, f;
node(LL x,int row,int f):x(x),row(row),f(f){};
bool operator<(const node&rhs)const{
return x < rhs.x;
}
};
vector<node> p;
int main()
{
cin>>n>>m;
for(int i = 0;i < n;i++){
scanf("%d%lld%lld",&x,&l,&r);
p.push_back(node(l, x - 1, 1));
p.push_back(node(r + 1, x - 1, -1));
}
p.push_back(node(m + 1, 1, -1));
sort(p.begin(),p.end());
int isobstacle[4] = {0};
MAT ans;
for(int i = 0;i < 3;i++) for(int j = 0;j < 3;j++) ans.a[i][j] = (i == j?1:0);
l = 1;
for(int i = 0; i < p.size();i++){
r = p[i].x;
LL d = r - l - 1; /// 区间左闭右开
if(d){
MAT mat;
for(int i = 0;i < 3;i++){ // 初始化转移矩阵
for(int j = 0;j < 3;j++) {
if(!isobstacle[i] && abs(i - j) <= 1) mat.a[i][j] = 1;
else mat.a[i][j] = 0;
}
}
ans = (mat ^ d) * ans;
}
isobstacle[p[i].row] += p[i].f;
l = r - 1;
}
cout<<ans.a[1][1]<<endl;
return 0;
}
Educational Codeforces Round 40 F. Runner's Problem的更多相关文章
- Educational Codeforces Round 40千名记
人生第二场codeforces.然而遇上了Education场这种东西 Educational Codeforces Round 40 下午先在家里睡了波觉,起来离开场还有10分钟. 但是突然想起来还 ...
- Educational Codeforces Round 40 C. Matrix Walk( 思维)
Educational Codeforces Round 40 (Rated for Div. 2) C. Matrix Walk time limit per test 1 second memor ...
- Educational Codeforces Round 40 (Rated for Div. 2) Solution
从这里开始 小结 题目列表 Problem A Diagonal Walking Problem B String Typing Problem C Matrix Walk Problem D Fig ...
- Educational Codeforces Round 40 I. Yet Another String Matching Problem
http://codeforces.com/contest/954/problem/I 给你两个串s,p,求上一个串的长度为|p|的所有子串和p的差距是多少,两个串的差距就是每次把一个字符变成另一个字 ...
- Educational Codeforces Round 61 F 思维 + 区间dp
https://codeforces.com/contest/1132/problem/F 思维 + 区间dp 题意 给一个长度为n的字符串(<=500),每次选择消去字符,连续相同的字符可以同 ...
- Educational Codeforces Round 51 F. The Shortest Statement(lca+最短路)
https://codeforces.com/contest/1051/problem/F 题意 给一个带权联通无向图,n个点,m条边,q个询问,询问两点之间的最短路 其中 m-n<=20,1& ...
- Educational Codeforces Round 12 F. Four Divisors 求小于x的素数个数(待解决)
F. Four Divisors 题目连接: http://www.codeforces.com/contest/665/problem/F Description If an integer a i ...
- Educational Codeforces Round 26 F. Prefix Sums 二分,组合数
题目链接:http://codeforces.com/contest/837/problem/F 题意:如题QAQ 解法:参考题解博客:http://www.cnblogs.com/FxxL/p/72 ...
- Educational Codeforces Round 9 F. Magic Matrix 最小生成树
F. Magic Matrix 题目连接: http://www.codeforces.com/contest/632/problem/F Description You're given a mat ...
随机推荐
- HashMap在并发场景下踩过的坑
本文来自网易云社区 作者:张伟 关于HashMap在并发场景下的问题有很多人,很多公司遇到过!也很多人总结过,我们很多时候都认为这样都坑距离自己很远,自己一定不会掉入这样都坑.可是我们随时都有就遇到了 ...
- 聊聊WS-Federation(test)
本文来自网易云社区 单点登录(Single Sign On),简称为 SSO,目前已经被大家所熟知.简单的说, 就是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统. 举例: 我们 ...
- 「日常训练」Alternative Thinking(Codeforces Round #334 Div.2 C)
题意与分析 (CodeForces - 603A) 这题真的做的我头疼的不得了,各种构造样例去分析性质... 题意是这样的:给出01字符串.可以在这个字符串中选择一个起点和一个终点使得这个连续区间内所 ...
- Java初始化方法:类、容器
Java初始化方法:类.容器 初始化类(非final): Struts2的DefaultActionMapper类中: public DefaultActionMapper() { ...
- 子序列 (All in All,UVa10340)
题目描述:算法竞赛入门经典习题3-9 题目思路:循环匹配 //没有按照原题的输入输出 #include <stdio.h> #include <string.h> #defin ...
- sparksql读写hbase
//写入hbase(hfile方式) org.apache.hadoop.hbase.client.Connection conn = null; try { SparkLog.debug(" ...
- 简单说明hadoop集群运行三种模式和配置文件
Hadoop的运行模式分为3种:本地运行模式,伪分布运行模式,集群运行模式,相应概念如下: 1.独立模式即本地运行模式(standalone或local mode)无需运行任何守护进程(daemon) ...
- 机器学习实战笔记一:K-近邻算法在约会网站上的应用
K-近邻算法概述 简单的说,K-近邻算法采用不同特征值之间的距离方法进行分类 K-近邻算法 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用范围:数值型和标称型 ...
- Reject Inference: Your Data is Deceiving You
Keyword: Reject Inference Suppose there is a dataset of several attributes, including working condit ...
- LeetCode - 167. Two Sum II - Input array is sorted - O(n) - ( C++ ) - 解题报告
1.题目大意 Given an array of integers that is already sorted in ascending order, find two numbers such t ...