Description:

在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。在一个社交圈子里有n个人,人与人之间有不同程度的关系。我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两 个人之间的关系越密切。

我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利, 即这些结点对于s 和t之间的联系有一定的重要程度。我们可以通过统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。

考虑到两个结点A和B之间可能会有多条最短路径。我们修改重要程度的定义如下:

令Cs,t表示从s到t的不同的最短路的数目,Cs,t(v)表示经过v从s到t的最短路的数目;则定义

为结点v在社交网络中的重要程度。

为了使I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图,即任意两个结点之间都有一条有限长度的最短路径。

现在给出这样一幅描述社交网络s的加权无向图,请你求出每一个结点的重要程度。

Input:

输入第一行有两个整数,n和m,表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到n进行编号。

接下来m行,每行用三个整数a, b, c描述一条连接结点a和b,权值为c的无向边。注意任意两个结点之间最多有一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。

Output:

输出包括n行,每行一个实数,精确到小数点后3位。第i行的实数表示结点i在社交网络中的重要程度。

思路:两遍弗洛伊德,一遍求出最短路径及两点间最短路径条数,一遍求出经过某点的情况下的最短路总和。

#include<iostream>
#include<cstring>
using namespace std;
const int N = ;
int g[N][N], n, m;
long long num[N][N][N], cnt[N][N];
int main(){
ios::sync_with_stdio(false);
cin>>n>>m;
int x, y, z;
memset(g, / , sizeof(g));
for(int i = ; i <= m; i++){
cin>>x>>y>>z;
g[x][y] = g[y][x] = z;
cnt[x][y] = cnt[y][x] = ;
}
for(int k = ; k <= n; k++)
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
if(i != j && i != k && j != k){
if(g[i][j] == g[i][k] + g[k][j])
cnt[i][j] += cnt[i][k] * cnt[k][j];
if(g[i][j] > g[i][k] + g[k][j])
cnt[i][j] = cnt[i][k] * cnt[k][j], g[i][j] = g[i][k] + g[k][j];
}
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
if(i != j)
for(int k = ; k <= n; k++)
if(i != k && j != k && g[i][j] == g[i][k] + g[k][j])
num[i][j][k] = cnt[i][k] * cnt[k][j];
double ans;
for(int k = ; k <= n; k++){
ans = ;
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
if(k != i && k != j && i != j)
ans += double(num[i][j][k]) / double(cnt[i][j]);
printf("%.3f\n", ans);
} return ;
}

BZOJ1491 洛谷2047 NOI2007 社交网络的更多相关文章

  1. 洛谷 P2047 [NOI2007]社交网络 解题报告

    P2047 [NOI2007]社交网络 题目描述 在社交网络(\(social\) \(network\))的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有\ ...

  2. 洛谷——P2047 [NOI2007]社交网络

    P2047 [NOI2007]社交网络 $Floyd$,一眼看到就是他(博主是不小心瞄到了这个题的标签吧qwq) 这个题目只要预处理出$S$到$T$的最短路的条数即可,类似$Spfa$的更新方法 如果 ...

  3. 洛谷P2047 [NOI2007]社交网络 [图论,最短路计数]

    题目传送门 社交网络 题目描述 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系. ...

  4. 洛谷 P4027 [NOI2007]货币兑换 解题报告

    P4027 [NOI2007]货币兑换 题目描述 小 \(Y\) 最近在一家金券交易所工作.该金券交易所只发行交易两种金券:\(A\) 纪念券(以下简称 \(A\) 券)和 \(B\) 纪念券(以下简 ...

  5. 洛谷P4027 [NOI2007]货币兑换

    P4027 [NOI2007]货币兑换 算法:dp+斜率优化 题面十分冗长,题意大概是有一种金券每天价值会有变化,你可以在某些时间点买入或卖出所有的金券,问最大收益 根据题意,很容易列出朴素的状态转移 ...

  6. 洛谷P4027 [NOI2007]货币兑换(dp 斜率优化 cdq 二分)

    题意 题目链接 Sol 解题的关键是看到题目里的提示... 设\(f[i]\)表示到第\(i\)天所持有软妹币的最大数量,显然答案为\(max_{i = 1}^n f[i]\) 转移为\(f_i = ...

  7. 洛谷4455 [CQOI2018]社交网络 (有向图矩阵树定理)(学习笔记)

    sro_ptx_orz qwq算是一个套路的记录 对于一个有向图来说 如果你要求一个外向生成树的话,那么如果存在一个\(u\rightarrow v\)的边 那么\(a[u][v]--,a[v][v] ...

  8. LOJ 2353 & 洛谷 P4027 [NOI2007]货币兑换(CDQ 分治维护斜率优化)

    题目传送门 纪念一下第一道(?)自己 yy 出来的 NOI 题. 考虑 dp,\(dp[i]\) 表示到第 \(i\) 天最多有多少钱. 那么有 \(dp[i]=\max\{\max\limits_{ ...

  9. 【BZOJ1491】[NOI2007]社交网络 Floyd

    [BZOJ1491][NOI2007]社交网络 Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子 ...

随机推荐

  1. python 定位文件目录

    经常有引用文件的地方,所以整理了一下如何定位文件目录的方法 定位当前文件的目录 import os file_path = os.path.dirname(__file__) 定位当前文件的父目录 i ...

  2. Leetcode-跳跃游戏

    跳跃游戏     给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 判断你是否能够到达最后一个位置. 示例 1: 输入: [2,3,1,1,4] ...

  3. lintcode 二叉树后序遍历

    /** * Definition of TreeNode: * class TreeNode { * public: * int val; * TreeNode *left, *right; * Tr ...

  4. 代码对齐 (Alignment of Code,ACM/ICPC NEERC 2010,UVa1593)

    题目描述: 解题思路: 输入时提出单个字符串,并用一个数组记录每列最长长度,格式化输出 #include <iostream> #include <algorithm> #in ...

  5. 正式放弃Edge,重新拥抱Chrome

    从Edge还叫斯巴达的时候我就开始用了,本来对浏览器的要求也没多高,能够打开多个选项卡,稳定,支持最新的规范就好了. 但是Edge真的是越来越让我失望了,卡死问题越来越多,崩溃越来越频繁,我也快奔溃了 ...

  6. 洛谷P1068 分数线划定:sort结构体排序+贪心

    题目描述 世博会志愿者的选拔工作正在 A 市如火如荼的进行.为了选拔最合适的人才,A市对所有报名的选手进行了笔试,笔试分数达到面试分数线的选手方可进入面试. 面试分数线根据计划录取人数的150%划定, ...

  7. windows 7 安装docker

    下载docker-install.exe 下载链接 安装,一路next(安装完成后建议重启电脑) 点击桌面boot2docker Start图标,等待初始化,运行docker --version检验是 ...

  8. 创新手机游戏《3L》开发点滴(1)——道具、物品、装备表设计

    一.游戏物品/道具系统数据模型设计特点 为了让游戏更加的丰富,我们1201团队的新手机游戏设计了道具系统.于是丰富了游戏.取悦了玩家,哭了开发——道具/物品数据子系统是简单的.复杂的.不确定的: 简单 ...

  9. UVALive 3668 A Funny Stone Game(博弈)

    Description The funny stone game is coming. There are n piles of stones, numbered with 0, 1, 2,...,  ...

  10. Bacon's Cipher(培根密码)

    Description Bacon's cipher or the Baconian cipher is a method of steganography (a method of hiding a ...