洛谷 P2730 魔板 Magic Squares 解题报告
P2730 魔板 Magic Squares
题目背景
在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板。这是一张有8个大小相同的格子的魔板:
1 2 3 4
8 7 6 5
题目描述
我们知道魔板的每一个方格都有一种颜色。这8种颜色用前8个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示。这是基本状态。
这里提供三种基本操作,分别用大写字母“A”,“B”,“C”来表示(可以通过这些操作改变魔板的状态):
“A”:交换上下两行;
“B”:将最右边的一列插入最左边;
“C”:魔板中央四格作顺时针旋转。
下面是对基本状态进行操作的示范:
A: 8 7 6 5
1 2 3 4
B: 4 1 2 3
5 8 7 6
C: 1 7 2 4
8 6 3 5
对于每种可能的状态,这三种基本操作都可以使用。
你要编程计算用最少的基本操作完成基本状态到目标状态的转换,输出基本操作序列。
输入输出格式
输入格式:
只有一行,包括8个整数,用空格分开(这些整数在范围 1——8 之间)不换行,表示目标状态。
输出格式:
Line 1: 包括一个整数,表示最短操作序列的长度。
Line 2: 在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出60个字符。
Dew的码力还是一如既往的差呢。
用广搜直接暴力,状态使用康托展开存储判重,事实上展开比较简单,而双射回去容易错,所以我只写了展开的。
Code:
#include <cstdio>
struct node
{
int sta[3][5],pre[2];
}s;
int fac[12];
int Hash(node sta)
{
int rk=0;
for(int i=1;i<=2;i++)
for(int j=1;j<=4;j++)
{
int k=(i-1)*4+j,cnt=0;
for(int i0=i;i0<=2;i0++)
for(int j0=(i0==i?j+1:1);j0<=4;j0++) cnt+=(sta.sta[i][j]>sta.sta[i0][j0]);
rk+=cnt*fac[8-k];
}
return rk;
}
void swap(int &x,int &y){int tmp=x;x=y;y=tmp;}
node q[50000];
int used[50000],l,r,ans,Ans[50000];
int main()
{
int now;
for(int i=1;i<=4;i++) scanf("%d",&s.sta[1][i]);
for(int i=4;i>=1;i--) scanf("%d",&s.sta[2][i]);
fac[0]=1;
for(int i=1;i<=10;i++) fac[i]=fac[i-1]*i;
int to=Hash(s);
for(int i=1;i<=4;i++) s.sta[1][i]=i;
for(int i=1;i<=4;i++) s.sta[2][i]=9-i;
l=1;
q[++r]=s;
while(l<=r)
{
node sta=q[l++];
node t=sta;
if(Hash(t)==to) {now=l-1;break;}
for(int i=1;i<=4;i++) swap(t.sta[1][i],t.sta[2][i]);
int h=Hash(t);
if(!used[h])
{
used[h]=1,q[++r]=t;
q[r].pre[0]=l-1,q[r].pre[1]=1;
}
t=sta;
t.sta[1][0]=t.sta[1][4];
t.sta[2][0]=t.sta[2][4];
for(int i=1;i<=2;i++)
for(int j=4;j;j--)
t.sta[i][j]=t.sta[i][j-1];
h=Hash(t);
if(!used[h])
{
used[h]=1,q[++r]=t;
q[r].pre[0]=l-1,q[r].pre[1]=2;
}
t=sta;
int tmp=t.sta[1][2];
t.sta[1][2]=t.sta[2][2];
t.sta[2][2]=t.sta[2][3];
t.sta[2][3]=t.sta[1][3];
t.sta[1][3]=tmp;
h=Hash(t);
if(!used[h])
{
used[h]=1,q[++r]=t;
q[r].pre[0]=l-1,q[r].pre[1]=3;
}
}
while(now)
{
Ans[++ans]=q[now].pre[1];
now=q[now].pre[0];
}
printf("%d\n",ans-1);
for(int i=ans;i;i--)
{
if(Ans[i]==1) printf("A");
if(Ans[i]==2) printf("B");
if(Ans[i]==3) printf("C");
}
return 0;
}
2018.8.8
洛谷 P2730 魔板 Magic Squares 解题报告的更多相关文章
- 洛谷 P2730 魔板 Magic Squares
P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...
- [洛谷P2730] 魔板 Magic Squares
洛谷题目链接:魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都 ...
- 洛谷 - P2730 - 魔板 Magic Squares - bfs
写状态转移弄了很久,老了,不记得自己的数组是怎么标号的了. #include <bits/stdc++.h> using namespace std; #define ll long lo ...
- 洛谷P2730 魔板 [广搜,字符串,STL]
题目传送门 魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有 ...
- P2730 魔板 Magic Squares
题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...
- P2730 魔板 Magic Squares (搜索)
题目链接 Solution 这道题,我是用 \(map\) 做的. 具体实现,我们用一个 \(string\) 类型表示任意一种情况. 可以知道,排列最多只有 \(8!\) 个. 然后就是直接的广搜了 ...
- 哈希+Bfs【P2730】 魔板 Magic Squares
没看过题的童鞋请去看一下题-->P2730 魔板 Magic Squares 不了解康托展开的请来这里-->我这里 至于这题为什么可以用康托展开?(瞎说时间到. 因为只有8个数字,且只有1 ...
- 【简●解】 LG P2730 【魔板 Magic Squares】
LG P2730 [魔板 Magic Squares] [题目背景] 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 ...
- [USACO3.2]魔板 Magic Squares
松下问童子,言师采药去. 只在此山中,云深不知处.--贾岛 题目:魔板 Magic Squares 网址:https://www.luogu.com.cn/problem/P2730 这是一张有8个大 ...
随机推荐
- Codeforces-A. Shortest path of the king(简单bfs记录路径)
A. Shortest path of the king time limit per test 1 second memory limit per test 64 megabytes input s ...
- (Python爬虫05)完善的爬虫学习大纲
- 【循环控制器】-(针对中间部分要循环的场景,相当于loadrunner的action部分)
一般使用 setup线程组 + teardown组 针对中间要循环的部分 使用循环处理器 单独循环中间的部分,相当于loadrunner的action部分
- 57[LeetCode] Insert Interval
Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessa ...
- Python+Opencv实现把图片转为视频
1. 安装Opencv包 在Python命令行输入如下命令(如果你使用的Anaconda,直接进入Anaconda Prompt键入命令即可.如果你不知道Anaconda是什么,可以参考王树义老师的文 ...
- [Data Structures and Algorithms - 1] Introduction & Mathematics
References: 1. Stanford University CS97SI by Jaehyun Park 2. Introduction to Algorithms 3. Kuangbin' ...
- 官方文档 恢复备份指南三 Recovery Manager Architecture
本节讨论以下问题: About the RMAN Environment 关于RMAN环境 RMAN Command-Line Client ...
- 将HTML页面页脚固定在页面底部(多种方法实现)
当一个HTML页面中含有较少的内容时,Web页面的footer部分随着飘上来,处在页面的半腰中间,给视觉效果带来极大的影响,接下来为大家介绍下如何将页脚固定在页面底部,感兴趣的朋友可以了解下 作为一个 ...
- 2019-1-92.4G射频芯片培训资料
2019-1-92.4G射频芯片培训资料 培训 RF 小书匠 欢迎走进zozo的学习之旅. 2.4G芯片选型 2.4G芯片开发 Q&A 2.4G芯片选型 芯片类型 soc 防盗标签2.4G无 ...
- M2功能规格说明书
1.目的: 这篇随笔是简述我们团队所做的工程所能实现的功能及方便用户的使用. 2.假定和约束: 我们先限定为本地连接数据库进行各种操作的实现.用户电脑中需要有FLASH工具及快播插件.其他只需要了解基 ...