Matching In Multiplication

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 1127    Accepted Submission(s): 325

Problem Description
In the mathematical discipline of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V (that is, U and V are each independent sets) such that every edge connects a vertex in U to one in V. Vertex sets U and V are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. A matching in a graph is a set of edges without common vertices. A perfect matching is a matching that each vertice is covered by an edge in the set.


Little Q misunderstands the definition of bipartite graph, he thinks the size of U is equal to the size of V, and for each vertex p in U, there are exactly two edges from p. Based on such weighted graph, he defines the weight of a perfect matching as the product of all the edges' weight, and the weight of a graph is the sum of all the perfect matchings' weight.
Please write a program to compute the weight of a weighted ''bipartite graph'' made by Little Q.

Input
The first line of the input contains an integer T(1≤T≤15), denoting the number of test cases.
In each test case, there is an integer n(1≤n≤300000) in the first line, denoting the size of U. The vertex in U and V are labeled by 1,2,...,n.
For the next n lines, each line contains 4 integers vi,1,wi,1,vi,2,wi,2(1≤vi,j≤n,1≤wi,j≤109), denoting there is an edge between Ui and Vvi,1, weighted wi,1, and there is another edge between Ui and Vvi,2, weighted wi,2.

It is guaranteed that each graph has at least one perfect matchings, and there are at most one edge between every pair of vertex.

Output
For each test case, print a single line containing an integer, denoting the weight of the given graph. Since the answer may be very large, please print the answer modulo 998244353.
Sample Input
1
2
2 1 1 4
1 4 2 3
Sample Output
16
【题意】给你一个二分图,每一集合里的 点数量 都为n,且其中一个集合里每个点的度数都为2.然后对于每一种完美匹配,算出边权值的乘积,然后再将每一种匹配的乘积加起来,输出最后结果。
【分析】U集合里的点 度数都为二,V集合里的点度数未知,但加起来肯定为2*n,对于V集合里度数为1的点,它的匹配对象是固定的,所以我们用拓扑排序将度数为1的点全部挖出,算出乘积res。然后对于剩下 的图,假设总节点为2*m,则V集合总度数为2*m,由于此时V集合里已经,没有度数为1的点,所以V集合里点的度数都为2,这说明这个图每个连通块是个环,在环上间隔着取即可,一共两种方案。比如对于两个联通块,他俩的两种方案乘积分别是(a1,a2),(b1,b2),则答案为a1*b1+a1*b2+a2*b1+a2*b2,化简后为(a1+a2)*(b1+b2),最后在乘以res即可。
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
#define qwer 2e18
using namespace std;
typedef long long ll;
const int N = 6e5+;
const int M = ;
const int mod = ;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
int n,s;
int vis[N],in[N];
ll ans[];
vector<pii>edg[N];
ll topSort(){
queue<int>q;
ll ret=;
for(int i=n+;i<=n+n;i++){
if(in[i]==){
q.push(i);
vis[i]=;
}
}
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=;i<edg[u].size();i++){
int v=edg[u][i].first;
if(vis[v])continue;
if((--in[v])==)q.push(v),vis[v]=;
if(u>n)ret=(ret*1LL*edg[u][i].second)%mod;
}
}
return ret;
}
void dfs(int u,int ty,int fa){
vis[u]=;
for(int i=;i<edg[u].size();i++){
int v=edg[u][i].first;
if(v==s&&v!=fa)ans[ty]=(ans[ty]*1LL*edg[u][i].second)%mod;
if(vis[v])continue;
ans[ty]=(ans[ty]*1LL*edg[u][i].second)%mod;
dfs(v,ty^,u);
}
}
int main(){
//freopen("de.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
for(int i=;i<N;i++)vis[i]=in[i]=,edg[i].clear();
for(int i=,v1,w1,v2,w2;i<=n;i++){
scanf("%d%d%d%d",&v1,&w1,&v2,&w2);
v1+=n;v2+=n;
edg[i].pb(mp(v1,w1));
edg[v1].pb(mp(i,w1));
edg[i].pb(mp(v2,w2));
edg[v2].pb(mp(i,w2));
in[i]+=;
in[v1]++;in[v2]++;
}
ll anss=topSort();
for(s=;s<=n;s++){
if(!vis[s]){
ans[]=ans[]=;
dfs(s,,);
anss=anss*((ans[]+ans[])%mod)%mod;
}
}
printf("%lld\n",anss);
}
return ;
}

HDU 6073 Matching In Multiplication(拓扑排序)的更多相关文章

  1. HDU 6073 - Matching In Multiplication | 2017 Multi-University Training Contest 4

    /* HDU 6073 - Matching In Multiplication [ 图论 ] | 2017 Multi-University Training Contest 4 题意: 定义一张二 ...

  2. HDU 6073 Matching In Multiplication(拓扑排序+思维)

    http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...

  3. HDU 6073 Matching In Multiplication dfs遍历环 + 拓扑

    Matching In Multiplication Problem DescriptionIn the mathematical discipline of graph theory, a bipa ...

  4. HDU 6073 Matching In Multiplication —— 2017 Multi-University Training 4

    Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K ( ...

  5. 2017 ACM暑期多校联合训练 - Team 4 1007 HDU 6073 Matching In Multiplication (模拟)

    题目链接 Problem Description In the mathematical discipline of graph theory, a bipartite graph is a grap ...

  6. HDU.3342 Legal or Not (拓扑排序 TopSort)

    HDU.3342 Legal or Not (拓扑排序 TopSort) 题意分析 裸的拓扑排序 根据是否成环来判断是否合法 详解请移步 算法学习 拓扑排序(TopSort) 代码总览 #includ ...

  7. HDU.1285 确定比赛名次 (拓扑排序 TopSort)

    HDU.1285 确定比赛名次 (拓扑排序 TopSort) 题意分析 裸的拓扑排序 详解请移步 算法学习 拓扑排序(TopSort) 只不过这道的额外要求是,输出字典序最小的那组解.那么解决方案就是 ...

  8. HDU 4857 逃生 (反向拓扑排序 & 容器实现)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4857 逃生 Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  9. ACM: HDU 1285 确定比赛名次 - 拓扑排序

     HDU 1285 确定比赛名次 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u De ...

随机推荐

  1. [洛谷P1338] 末日的传说

    洛谷题目链接:末日的传说 题目描述 只要是参加jsoi活动的同学一定都听说过Hanoi塔的传说:三根柱子上的金片每天被移动一次,当所有的金片都被移完之后,世界末日也就随之降临了. 在古老东方的幻想乡, ...

  2. 【C++ STL】Stack

    1.定义 class stack<> 实作出一个stack(也成为LIFO,后进先出),你可以使用push()将任意数量的元素置入stack中,也可以使用pop()将元素依次插入次序反序从 ...

  3. 【洛谷 P2754】 [CTSC1999]家园(最大流)

    题目链接 突然发现Dinic很好写诶.. 第一次数组开小了,玄学\(WA\),what?数据范围描述有误? 分层图,每天为一层. 把上一天的每个空间站向这一天连一条流量为inf的边,表示可以原地不动. ...

  4. 4 Values whose Sum is 0 POJ 2785 (折半枚举)

    题目链接 Description The SUM problem can be formulated as follows: given four lists A, B, C, D of intege ...

  5. 微信小程序setData子元素

    页面的数据中如果有子元素,如下图nowQuestion中的deleted元素 在小程序的setData中,不能直接用nowQuestion.deleted来设定它的值,而需要再定义一个变量承接 另外, ...

  6. javascript执行上下文学习一

    原文: http://web.jobbole.com/84044/ http://blog.csdn.net/github_34514750/article/details/52901781 1.三种 ...

  7. Python脚本 - 常用单位转换

    测试系统为:Centos 6.7 Python版本为: 3.6.4 脚本功能:常用单位的转换,这里用内存来模拟 import pstuil def bytes2human(n): symbols = ...

  8. Caffe学习笔记2

    Caffe学习笔记2-用一个预训练模型提取特征 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hi ...

  9. python基础===Sublime Text 3 快捷键

    选择类 Ctrl+D 选中光标所占的文本,继续操作则会选中下一个相同的文本. Alt+F3 选中文本按下快捷键,即可一次性选择全部的相同文本进行同时编辑.举个栗子:快速选中并更改所有相同的变量名.函数 ...

  10. Linux内核【链表】整理笔记(2) 【转】

    转自:http://blog.chinaunix.net/uid-23069658-id-4725279.html 关于链表我们更多时候是对其进行遍历的需求,上一篇博文里我们主要认识了一下和链表操作比 ...