The King’s Ups and Downs

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 582    Accepted Submission(s): 409

Problem Description
The king has guards of all different heights. Rather than line them up in increasing or decreasing height order, he wants to line them up so each guard is either shorter than the guards next to him or taller than the guards next to him (so the heights go up and down along the line). For example, seven guards of heights 160, 162, 164, 166, 168, 170 and 172 cm. could be arranged as:

or perhaps:

The king wants to know how many guards he needs so he can have a different up and down order at each changing of the guard for rest of his reign. To be able to do this, he needs to know for a given number of guards, n, how many different up and down orders there are:

For example, if there are four guards: 1, 2, 3,4 can be arrange as:

1324, 2143, 3142, 2314, 3412, 4231, 4132, 2413, 3241, 1423

For this problem, you will write a program that takes as input a positive integer n, the number of guards and returns the number of up and down orders for n guards of differing heights.

 
Input
The first line of input contains a single integer P, (1 <= P <= 1000), which is the number of data sets that follow. Each data set consists of single line of input containing two integers. The first integer, D is the data set number. The second integer, n (1 <= n <= 20), is the number of guards of differing heights.
 
Output
For each data set there is one line of output. It contains the data set number (D) followed by a single space, followed by the number of up and down orders for the n guards.
 
Sample Input
4
1 1
2 3
3 4
4 20
 
Sample Output
1 1
2 4
3 10
4 740742376475050
 
Source
 
Recommend
liuyiding   |   We have carefully selected several similar problems for you:  6018 6017 6016 6015 6014 

一道较为基础的dp
我们可以对每个总人数n设4个状态,分别代表:
a[1][n]:1比2高且n-1比n高,即 \……\;
a[2][n]:1比2高且n比n-1高,即 \……/;
a[3][n]:2比1高且n-1比n高,即 /……\;
a[4][n]:2比1高且n比n-1高,即 /……/。
对于奇数n 不存在1、4这两种状态,
对于偶数n不存在2、3这两种状态。
(所以可以压缩为2个状态,懒得压了。。自己看着压吧)
对于每个状态a[j][i]都可以可以从a[k][i-1]得到。
我们要求解一个n人的高低序列,我们可以把n高度这个人左边插入一个合法的(i-1)长度的末端下降序列和右边插入一个合法的(n-i)长度的左端上升序列(1<=i<=n)。(同样的我们也可以在1的左右插入,结果相同)
所以我们得出一个dp式子:
(c为组合数 $c_{n-1}^{i-1}$)
  对于奇数n
  for i=1 to n 
    i为奇数
        a[2][n]+=a[1][i-1]*a[4][n-i]*c[n-1][i-1];(或 a[3][n]=a[4][i-1]*a[1][n-i]*c[n-1][i-1];插入1的做法,两者等价)
    i为偶数
                a[3][n]+=a[3][i-1]*a[3][n-i]*c[n-1][i-1];(或 a[2][n]+=a[2][i-1]*a[2][n-i]*c[n-1][i-1];)
  对于偶数 n
  for i=1 to n 
    i为奇数
        a[1][n]+=a[1][i-1]*a[3][n-i]*c[n-1][i-1];(或 a[4][n]=a[4][i-1]*a[2][n-i]*c[n-1][i-1];插入1的做法,两者等价)
    i为偶数
                 a[4][n]+=a[3][i-1]*a[4][n-i]*c[n-1][i-1];(或 a[1][n]+=a[2][i-1]*a[1][n-i]*c[n-1][i-1];)
  然后对1~4中状态求和即为答案 sum[i]。
 #include<cstdio>
#include<iostream>
#include<cstring>
#define clr(x) memset(x,0,sizeof(x))
#define LL long long
using namespace std;
LL c[][];
LL a[][];
LL sum[];
void combine(int n);
void dp(int num);
int main()
{
clr(c);
clr(a);
combine();
dp();
int T,n,m;
scanf("%d",&T);
for(int tt=;tt<=T;tt++)
{
scanf("%d%d",&m,&n);
printf("%d %lld\n",m,sum[n]);
}
return ; }
void combine(int n)
{
for(int i=;i<=n;i++)
{
c[i][]=c[i][i]=;
for(int j=;j<i;j++)
{
c[i][j]=c[i][j-]*(i-j+)/j;
}
}
return ;
}
void dp(int num)
{
a[][]=a[][]=a[][]=a[][]=;
sum[]=;
sum[]=;
for(int n=;n<=num;n++)
{
if(n&)
{
for(int i=;i<=n;i++)
if(i&)
a[][n]+=a[][i-]*a[][n-i]*c[n-][i-];
else
a[][n]+=a[][i-]*a[][n-i]*c[n-][i-];
sum[n]=a[][n]+a[][n];
}
else
{
for(int i=;i<=n;i++)
if(i&)
a[][n]+=a[][i-]*a[][n-i]*c[n-][i-];
else
a[][n]+=a[][i-]*a[][n-i]*c[n-][i-];
sum[n]=a[][n]+a[][n];
}
}
return ;
}

hdu 4489 The King’s Ups and Downs(基础dp)的更多相关文章

  1. HDU 4489 The King’s Ups and Downs (DP+数学计数)

    题意:给你n个身高高低不同的士兵.问你把他们按照波浪状排列(高低高或低高低)有多少方法数. 析:这是一个DP题是很明显的,因为你暴力的话,一定会超时,应该在第15个时,就过不去了,所以这是一个DP计数 ...

  2. HDU 4489 The King's Ups and Downs

    HDU 4489 The King's Ups and Downs 思路: 状态:dp[i]表示i个数的方案数. 转移方程:dp[n]=∑dp[j-1]/2*dp[n-j]/2*C(n-1,j-1). ...

  3. HDU 4489 The King’s Ups and Downs dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4489 The King's Ups and Downs Time Limit: 2000/1000 ...

  4. HDU 4489 The King’s Ups and Downs

    http://acm.hdu.edu.cn/showproblem.php?pid=4489 题意:有n个身高不同的人,计算高低或低高交错排列的方法数. 思路:可以按照身高顺序依次插进去. d[i][ ...

  5. HDU 4055 The King’s Ups and Downs(DP计数)

    题意: 国王的士兵有n个,每个人的身高都不同,国王要将他们排列,必须一高一矮间隔进行,即其中的一个人必须同时高于(或低于)左边和右边.问可能的排列数.例子有1千个,但是最多只算到20个士兵,并且20个 ...

  6. UVALive 6177 The King's Ups and Downs

    The King's Ups and Downs Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UV ...

  7. The King’s Ups and Downs(HDU 4489,动态规划递推,组合数,国王的游戏)

    题意: 给一个数字n,让1到n的所有数都以波浪形排序,即任意两个相邻的数都是一高一低或者一低一高 比如:1324   4231,再比如4213就是错的,因为4高,2低,接下来1就应该比2高,但是它没有 ...

  8. The King’s Ups and Downs

    有n个高矮不同的士兵,现在要将他们按高,矮依次排列,问有多少种情况. 化简为 n个人,求出可以形成波浪形状的方法数 #include <iostream> #include <cma ...

  9. hdu 4055 && hdu 4489 动态规划

    hdu 4055: 一开始我想的递推方向想得很复杂,看了别人的博客后才醍醐灌顶: 参照他的思路和代码: #include<cstdio> #include<cstring> # ...

随机推荐

  1. .net JsonHelper json帮助类

    using Newtonsoft.Json; using System.Runtime.Serialization.Json; using System.Text; public class Json ...

  2. SQL SERVER 常用公式

    SQL SERVER 获取当前月的天数 SELECT -DAY(getdate()+-DAY(getdate())) SQL server 除法计算百分比[整数乘1.0否则结果为0或1] CONVER ...

  3. C#编写程序监测某个文件夹内是否有文件进行了增,删,改的动作?

    新建一个Console应用程序,项目名称为“FileSystemWatcher”,Copy代码进,编译后就可以用了.代码如下: using System; using System.Collectio ...

  4. Python中的异常处理 -- (转)

    python中的异常   异常是指程序中的例外,违例情况.异常机制是指程序出现错误后,程序的处理方法.当出现错误后,程序的执行流程发生改变,程序的控制权转移到异常处理. Exception类是常用的异 ...

  5. SpringBoot工程目录配置

    Spring Boot建议的目录结果如下: root package结构:com.example.myproject   com +- example +- myproject +- Applicat ...

  6. 采用dlopen、dlsym、dlclose加载动态链接库【转】

    转自:http://www.cnblogs.com/Anker/p/3746802.html 1.前言 为了使程序方便扩展,具备通用性,可以采用插件形式.采用异步事件驱动模型,保证主程序逻辑不变,将各 ...

  7. 网站服务器压力Web性能测试(1):Apache Bench:Apache自带服务器压力测试工具

    一个网站或者博客到底能够承受多大的用户访问量经常是我们在用VPS或者独立服务器搭建网站了最关心的问题,还有不少人喜欢对LNMP或者LAMP进行一些优化以便提高Web性能,而优化后到底有多大的效果,就需 ...

  8. AspxGridView 表中的ASPxHyperLink不导出到excel

    在软件中 因为要连接到其他的页面所以类型转成了ASPxHyperLink,但是用官方的导出控件导出到excel之后,连接依旧保留着, 目的:去除导出来的连接 方法:把之前的ASPxHyperLink转 ...

  9. 2017百度春招<度度熊买帽子的问题>

    题目: 度度熊想去商场买一顶帽子,商场里有N顶帽子,有些帽子的价格可能相同.度度熊想买一顶价格第三便宜的帽子,问第三便宜的帽子价格是多少? 数组中找到第三小的数字  注意边界条件 用STL中的set来 ...

  10. php设计模式四 ---- 原型模式

    1.简介 用于创建重复的对象,同时又能保证性能.这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式 意图:用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象. 主要解决:在运 ...