【算法】离散化+树状数组(求逆序对)

【题解】经典,原理是统计在i之前插入的且值≤i的个数,然后答案就是i-getsum(i)

#include<cstdio>
#include<algorithm>
#include<cstring>
#define lowbit(x) x&(-x)
using namespace std;
const int maxn=;
int A[maxn],ord[maxn],a[maxn],b[maxn],n,s;
bool cmp(int x,int y)
{return a[x]<a[y];}
void insert(int x)
{
for(int i=x;i<=s;i+=lowbit(i))A[i]++;
}
int getsum(int x)
{
int ans=;
for(int i=x;i>=;i-=lowbit(i))ans+=A[i];
return ans;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
ord[i]=i;
}
sort(ord+,ord+n+,cmp);
s=;b[ord[]]=;
for(int i=;i<=n;i++)b[ord[i]]=a[ord[i]]==a[ord[i-]]?s:++s;
int ans=;
for(int i=;i<=n;i++)
{
insert(b[i]);
ans+=i-getsum(b[i]);
}
printf("%d",ans);
return ;
}

【51NOD-0】1019 逆序数的更多相关文章

  1. 51nod 1019 逆序数

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...

  2. 51nod 1019 逆序数(逆序数+离散化)

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数.   如2 4 3 1中,2 1,4 3,4 1,3 1是 ...

  3. 51Nod 1019 逆序数(线段树)

    题目链接:逆序数 模板题. #include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a) ...

  4. (分治)51NOD 1019 逆序数

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数.   如2 4 3 1中,2 1,4 3,4 1,3 1是 ...

  5. 51Nod 1019 逆序数 (归并排序)

    #include <iostream> #include <cstring> using namespace std; ; int a[maxn]; int res[maxn] ...

  6. 51nod1019 逆序数

    1019 逆序数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为 ...

  7. nyoj117 求逆序数

    求逆序数 时间限制:2000 ms  |  内存限制:65535 KB 难度:5   描述 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中 ...

  8. POJ2299 Ultra-QuickSort(归并排序求逆序数)

    归并排序求逆序数   Time Limit:7000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Descri ...

  9. 求字符数组逆序数(poj1007)

    int InversionNumber(char* s,int len) { int ans=0;  //s逆序数 int A,C,G;  //各个字母出现次数,T是最大的,无需计算T出现次数 A=C ...

随机推荐

  1. Java之Math类使用小结(转发)

    Java的Math类封装了很多与数学有关的属性和方法,大致如下: public class Main { public static void main(String[] args) { // TOD ...

  2. iOS-修改导航栏文字字体和颜色

    //修改导航栏文字字体和颜色 nav.navigationBar.titleTextAttributes = @{NSForegroundColorAttributeName:[RGBColor co ...

  3. requests保持cookies的问题

    获取cookie,返回CookieJar对象:url = 'http://www.baidu.com'r = requests.get(url) r.cookies#将CookieJar转为字典: c ...

  4. Thinkphp5的ajax接口实现

    前一篇讲到thinkphp5从数据库获取数据之后赋给视图view,前一篇从数据渲染方式来说是服务端数据渲染,这一章则是浏览器端数据渲染.按照知识总结依据来划分,这是两种不同的技术场景. 下面介绍具体的 ...

  5. array_intersect_assoc 与array_intersect区别

    1.array_intersect_assoc — 带索引检查计算数组的交集 说明 array array_intersect_assoc ( array $array1 , array $array ...

  6. java从远程服务器获取PDF文件并后台打印(使用pdfFox)

    一.java原生方式打印PDF文件 正反面都打印,还未研究出只打印单面的方法,待解决 public static void printFile(String path) throws Exceptio ...

  7. Qt快速入门学习笔记(基础篇)

    本文基于Qter开源社区论坛版主yafeilinux编写的<Qt快速入门系列教程目录>,网址:http://bbs.qter.org/forum.php?mod=viewthread&am ...

  8. RT-thread内核对象标志flag总结

    一.内核标志flag 在内核对象控制块中有一个标志成员flag(rt_uint8_t flag; ),这个标志在不同有内核对象中具有不同的含义.rt-thread的内核对象有定时器.线程.信号量.互斥 ...

  9. bzoj 4568 [SCOI 2016] 幸运数字

    题目大意 给定一棵\(n\)个点的树,每个点有权值 \(q\)次询问树上路径中 每个点权值可选可不选的最大异或和 \(n\le 2*10^4,q\le 2*10^5,val[i]\le 2^{60}\ ...

  10. 【bzoj1030】[JSOI2007]文本生成器 AC自动机+dp

    题目描述 JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,他们现在使用的是GW文本生成器v6版.该软件可以随机生成一些文章―――总是生成一篇长度固 ...