题目链接

这种求方案数的题一般都是\(dp\)吧。

注意到范围里\(k\)和\(n\)的范围一样大,\(k\)是完全可以更大的,到\(n\)的平方级别,所以这暗示了我们要把\(k\)写到状态里。

\(f[i][j]\)表示前\(1\)~\(i\)的排列逆序对数为\(j\)的方案数。

现在考虑把\(i\)插入到\(i-1\)的排列里。

\(i\)肯定是大于\(1\)$i-1$所有数的,所以插入$i$后可以新产生$0$\(i-1\)个逆序对。

于是就能写出\(O(n^3)\)的\(dp\)算法了。

像这种转移范围是个区间的,要优化不是单调队列就是前缀和,当然是愉快地选择后者啦。

#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define Open(s) freopen(s".in","r",stdin);freopen(s".out","w",stdout);
#define Close fclose(stdin);fclose(stdout);
int n, k; int f[1010][1010];
const int MOD = 10000;
int main(){
scanf("%d%d", &n, &k);
f[1][0] = 1;
for(int i = 2; i <= n; ++i){
int sum = 0;
for(int j = 0; j <= k; ++j){
sum = (sum + f[i - 1][j]) % MOD;
f[i][j] = sum;
if(j >= i - 1)
sum = ((sum - f[i - 1][j - i + 1]) % MOD + MOD) % MOD;
}
}
printf("%d\n", f[n][k]);
return 0;
}

【洛谷 P2513】 [HAOI2009]逆序对数列(DP)的更多相关文章

  1. 洛谷P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易 ...

  2. 【洛谷P2513】逆序对数列

    前缀和.滚动数组优化dp f[i][j]表示前i个数,逆序对数为j的方案数 我们知道,在第k个位置放第i个数,单步得到的逆序对数为i-k 则在前i个数,最多能产生的逆序对数为i个,最少0个,均可转移到 ...

  3. P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那 ...

  4. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  5. BZOJ2431:[HAOI2009]逆序对数列(DP,差分)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  6. 【bzoj2431】[HAOI2009]逆序对数列 dp

    题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...

  7. [题解] P2513 [HAOI2009]逆序对数列

    动态规划,卡常数 题目地址 设\(F[X][Y]\)代表长度为\(X\)的序列,存在\(Y\)组逆序对的方案数量. 考虑\(F[X][i]\)向\(F[X+1][i]\)转移: 把数字\(X+1\)添 ...

  8. [bzoj2431][HAOI2009][逆序对数列] (dp计数)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  9. [BZOJ2431][HAOI2009]逆序对数列(DP)

    从小到大加数,根据加入的位置转移,裸的背包DP. #include<cstdio> #include<cstring> #include<algorithm> #d ...

  10. BZOJ2431 HAOI2009 逆序对数列 【DP】*

    BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai​,如果有i<j且ai>aja_i>a_jai​>aj​,那么我们称aia ...

随机推荐

  1. java线程安全— synchronized和volatile

    java线程安全— synchronized和volatile package threadsafe; public class TranditionalThreadSynchronized { pu ...

  2. 使用WCF上传数据

    通过传递Stream对象来传递大数据文件,但是有一些限制: 1.只有 BasicHttpBinding.NetTcpBinding 和 NetNamedPipeBinding 支持传送流数据. 2. ...

  3. [CLR via C#]引用类型和值类型

    一.引用类型与值类型的区别 CLR支持两种类型:引用类型和值类型.引用类型总是从托管堆上分配的,C#的new操作符会返回对象的内存地址.使用引用类型时,必须注意到一些性能问题. 1)内存必须从托管堆上 ...

  4. AutoHotKey 快速入门

    AutoHotKey 是一个免费的键盘宏程序,可以用于配置键盘快捷键.鼠标事件 以及摇杆事件,还可以在输入文本的时候对文本进行扩展(自动补全) 第一个脚本 新建文件test.ahk并输入以下内容: ^ ...

  5. /proc/meminfo中meminfo的计算方法

    /proc/meminfo里的可使用内存的计算没有那么简单,并不是简单的free和page cache的加和 free + pagecache 以此为基准 但是需要减去一些内存:首先要减去系统预留的内 ...

  6. [剑指Offer] 61.序列化二叉树

    题目描述 请实现两个函数,分别用来序列化和反序列化二叉树 /* struct TreeNode { int val; struct TreeNode *left; struct TreeNode *r ...

  7. [Leetcode] 3.Longest Substring Without Repeating Characters(unordered_map)

    通过把未访问的结点放到unordered_map中来判断是否重复,代码如下: class Solution { public: int lengthOfLongestSubstring(string ...

  8. TCP协议的滑动窗口具体是怎样控制流量的

    首先明确: 1)TCP滑动窗口分为接受窗口,发送窗口滑动窗口协议是传输层进行流控的一种措施,接收方通过通告发送方自己的窗口大小,从而控制发送方的发送速度,从而达到防止发送方发送速度过快而导致自己被淹没 ...

  9. 第63天:json的两种声明方式

    一. json 两种声明方式 1. 对象声明   var  json = {width:100,height:100} 2. 数组声明   var  man = [        //  数组的 js ...

  10. Go语言【第十二篇】:Go数据结构之:切片(Slice)、范围(Range)、集合(Map)

    Go语言切片(Slice) Go语言切片是对数组的抽象,Go数组的长度不可改变,在特定场景中这样的集合就不太适用,Go中提供了一种灵活,功能强悍的内置类型切片("动态数组"),与数 ...