题目链接

这种求方案数的题一般都是\(dp\)吧。

注意到范围里\(k\)和\(n\)的范围一样大,\(k\)是完全可以更大的,到\(n\)的平方级别,所以这暗示了我们要把\(k\)写到状态里。

\(f[i][j]\)表示前\(1\)~\(i\)的排列逆序对数为\(j\)的方案数。

现在考虑把\(i\)插入到\(i-1\)的排列里。

\(i\)肯定是大于\(1\)$i-1$所有数的,所以插入$i$后可以新产生$0$\(i-1\)个逆序对。

于是就能写出\(O(n^3)\)的\(dp\)算法了。

像这种转移范围是个区间的,要优化不是单调队列就是前缀和,当然是愉快地选择后者啦。

#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define Open(s) freopen(s".in","r",stdin);freopen(s".out","w",stdout);
#define Close fclose(stdin);fclose(stdout);
int n, k; int f[1010][1010];
const int MOD = 10000;
int main(){
scanf("%d%d", &n, &k);
f[1][0] = 1;
for(int i = 2; i <= n; ++i){
int sum = 0;
for(int j = 0; j <= k; ++j){
sum = (sum + f[i - 1][j]) % MOD;
f[i][j] = sum;
if(j >= i - 1)
sum = ((sum - f[i - 1][j - i + 1]) % MOD + MOD) % MOD;
}
}
printf("%d\n", f[n][k]);
return 0;
}

【洛谷 P2513】 [HAOI2009]逆序对数列(DP)的更多相关文章

  1. 洛谷P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易 ...

  2. 【洛谷P2513】逆序对数列

    前缀和.滚动数组优化dp f[i][j]表示前i个数,逆序对数为j的方案数 我们知道,在第k个位置放第i个数,单步得到的逆序对数为i-k 则在前i个数,最多能产生的逆序对数为i个,最少0个,均可转移到 ...

  3. P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那 ...

  4. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  5. BZOJ2431:[HAOI2009]逆序对数列(DP,差分)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  6. 【bzoj2431】[HAOI2009]逆序对数列 dp

    题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...

  7. [题解] P2513 [HAOI2009]逆序对数列

    动态规划,卡常数 题目地址 设\(F[X][Y]\)代表长度为\(X\)的序列,存在\(Y\)组逆序对的方案数量. 考虑\(F[X][i]\)向\(F[X+1][i]\)转移: 把数字\(X+1\)添 ...

  8. [bzoj2431][HAOI2009][逆序对数列] (dp计数)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  9. [BZOJ2431][HAOI2009]逆序对数列(DP)

    从小到大加数,根据加入的位置转移,裸的背包DP. #include<cstdio> #include<cstring> #include<algorithm> #d ...

  10. BZOJ2431 HAOI2009 逆序对数列 【DP】*

    BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai​,如果有i<j且ai>aja_i>a_jai​>aj​,那么我们称aia ...

随机推荐

  1. PCA算法理解及代码实现

    github:PCA代码实现.PCA应用 本文算法均使用python3实现 1. 数据降维   在实际生产生活中,我们所获得的数据集在特征上往往具有很高的维度,对高维度的数据进行处理时消耗的时间很大, ...

  2. 《剑指offer》---寻找反转数组最小值

    本文算法使用python3实现 1.题目描述:   把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转. 输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素. 例如数组{3,4, ...

  3. iOS-AFNetworking与ASIHTTPRequest的区别

    一.底层实现 1.AFN的底层实现基于OC的NSURLConnection和NSURLSession  2.ASI的底层实现基于纯C语言的CFNetwork框架  3.因为NSURLConnectio ...

  4. <Android>tab选项卡

    1.继承TabActivity实现 a)         在布局文件中使用FrameLayout列出Tab组件及Tab中的内容组件 b)        Activity要继承TabActivity c ...

  5. Qt窗口及控件-窗口Close()自动释放

    版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:Qt-窗口Close()后自动释放空间     本文地址:http://techieliang ...

  6. 【Linux】- netstat 命令

    Linux netstat命令用于显示网络状态.利用netstat指令可让你得知整个Linux系统的网络情况. 语法 netstat [-acCeFghilMnNoprstuvVwx][-A<网 ...

  7. NeoLoad系列- 快速上手教程

    1.新建工程 2.点击录制脚本按钮 3.在弹出的开始录制对话框中,填写虚拟用户信息. Record in下拉框,用来填写用户路径,一般有三个容器组成: Init, Actions, and End.当 ...

  8. matplotlib中什么是后端

    在很多网上文档和邮件列表中提到了"后端",并且很多初学者会对这个术语迷惑.matplotlib把不同使用情形和输出格式作为目标.一些人用matplotlib在python shel ...

  9. [剑指Offer] 55.链表中环的入口结点

    题目描述 一个链表中包含环,请找出该链表的环的入口结点. [思路]根据set集合的不重复,遍历链表时遇到的第一个重复结点就是环的入口结点. /* struct ListNode { int val; ...

  10. java session特性

    1.当前浏览器不关闭 则一直有效 servlet就能取到值(未设置过期时间情况下 或者在过期的时间范围内)  算成一次会话 再次会话内多个请求都能获得session 2.session保存在服务端,通 ...