【BZOJ4517】【SDOI2016】排列计数 [数论]
排列计数
Time Limit: 60 Sec Memory Limit: 128 MB
[Submit][Status][Discuss]
Description
Input
Output
输出 T 行,每行一个数,表示求出的序列数
Sample Input
1 0
1 1
5 2
100 50
10000 5000
Sample Output
1
20
578028887
60695423
HINT
Main idea
求所有排列中恰好有m个 a[i]=i 的个数。
Solution
直接运用组合数和错排公式上一波即可。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<map>
using namespace std;
typedef long long s64; const int ONE = ;
const int MOD = 1e9+; int T,n,m;
int fac[ONE], inv[ONE], D[ONE]; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} int Quickpow(int a, int b)
{
int res = ;
while(b)
{
if(b & ) res = (s64)res * a % MOD;
a = (s64)a * a % MOD;
b >>= ;
}
return res;
} void Deal_first()
{
int Limit = ONE-; fac[] = ;
for(int i=; i<=Limit; i++)
fac[i] = (s64)fac[i-] * i % MOD; inv[Limit] = Quickpow(fac[Limit], MOD-);
for(int i=Limit-; i>=; i--)
inv[i] = (s64)inv[i+] * (i+) % MOD; D[] = D[] = ;
for(int i=; i<=Limit; i++)
D[i] = (s64)(i-) * (D[i-] + D[i-]) % MOD;
} int C(int n,int m)
{
if(n == m) return ;
return (s64)fac[n] * inv[m] % MOD * inv[n-m] % MOD;
} int Query(int n,int m)
{
return (s64)C(n,m) * D[n-m] % MOD;
} int main()
{
Deal_first();
T = get();
while(T--)
{
n = get(); m = get();
printf("%d\n", Query(n,m));
}
}
【BZOJ4517】【SDOI2016】排列计数 [数论]的更多相关文章
- BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*
BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...
- [BZOJ4517][SDOI2016]排列计数(错位排列)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1616 Solved: 985[Submit][Statu ...
- bzoj4517[Sdoi2016]排列计数(组合数,错排)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1792 Solved: 1111[Submit][Stat ...
- [BZOJ4517] [Sdoi2016] 排列计数 (数学)
Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...
- 2018.10.25 bzoj4517: [Sdoi2016]排列计数(组合数学)
传送门 组合数学简单题. Ans=(nm)∗1Ans=\binom {n} {m}*1Ans=(mn)∗1~(n−m)(n-m)(n−m)的错排数. 前面的直接线性筛逆元求. 后面的错排数递推式本蒟 ...
- BZOJ4517——[Sdoi2016]排列计数
求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可 ...
- BZOJ4517: [Sdoi2016]排列计数
Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...
- bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得
这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...
- bzoj千题计划282:bzoj4517: [Sdoi2016]排列计数
http://www.lydsy.com/JudgeOnline/problem.php?id=4517 组合数+错排公式 #include<cstdio> #include<ios ...
- BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)
Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...
随机推荐
- 一个例子说明mouseover事件与mouseenter事件的区别
<html> <head> <meta charset="UTF-8"> <title>haha</title> < ...
- LintCode-532.逆序对
逆序对 在数组中的两个数字如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.给你一个数组,求出这个数组中逆序对的总数. 概括:如果a[i] > a[j] 且 i < j, a[i ...
- pfx 证书怎么打开
其实双击就能够自动运行导入向导的 不行的话使用我的办法: 单击开始--运行--里输入mmc 然后单击文件--选择添加删除管理单元--再选择添加--拉动滚动条找到证书一项,点击添加再点击完成(不用做任何 ...
- java-实用的sql语句
一.在数据库创建表格的SQL语句 1,创建一个link表格,包含属性:lid 主键,title 标题, imgpath 图片地址 , url 网址 , info 说明, isshow 显示1 ...
- Tomcat启动报错ERROR:transport error 202:bind failed:Address already
昨天在服务器上拷贝了一个tomcat项目,修改了server.xml之后启动居然报错ERROR:transport error 202:bind failed:Address already,应该是远 ...
- [OS] 多线程--第一次亲密接触CreateThread与_beginthreadex本质区别
转自:http://blog.csdn.net/morewindows/article/details/7421759 本文将带领你与多线程作第一次亲密接触,并深入分析CreateThread与_be ...
- 【EF】Entity Framework Core 2.0 特性介绍和使用指南
阅读目录 前言 获取和使用 新特性 项目升级和核心API变化 下一步计划 遗憾的地方 回到目录 前言 这是.Net Core 2.0生态生态介绍的最后一篇,EF一直是我喜欢的一个ORM框架,随着版本升 ...
- Shel脚本学习—反引号、单引号、双引号区别与联系
反引号 反引号位 (`) 位于键盘的Tab键的上方.1键的左方.注意与单引号(')位于Enter键的左方的区别. 在Linux中起着命令替换的作用.命令替换是指shell能够将一个命令的标准输出插在一 ...
- bzoj 3275: Number (最小割)
题目的意思是要选一些数,但是这些数如果满足两个条件的话就不能一起被选. type arr=record toward,next,cap:longint; end; const maxn=; maxm= ...
- 虚拟机网络连接模式中桥接模式和NAT模式的区别
1.桥接模式:当虚拟机系统的网络连接模式为桥接模式时,相当于在主机系统和虚拟机系统之间连接了一个网桥,而网桥两端的网络都属于同一网络,主机和虚拟机是处于同一网络中的对等主机. 实例,在使用Xshell ...