排列计数

Time Limit: 60 Sec  Memory Limit: 128 MB
[Submit][Status][Discuss]

Description

  求有多少种长度为 n 的序列 A,满足以下条件:
  1 ~ n 这 n 个数在序列中各出现了一次
  若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的
  满足条件的序列可能很多,序列数对 10^9+7 取模。

Input

  第一行一个数 T,表示有 T 组数据。
  接下来 T 行,每行两个整数 n、m。

Output

  输出 T 行,每行一个数,表示求出的序列数

Sample Input

  5
  1 0
  1 1
  5 2
  100 50
  10000 5000

Sample Output

  0
  1
  20
  578028887
  60695423

HINT

  T=500000,n≤1000000,m≤1000000

Main idea

  求所有排列中恰好有m个 a[i]=i 的个数。

Solution

  直接运用组合数和错排公式上一波即可。

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<map>
using namespace std;
typedef long long s64; const int ONE = ;
const int MOD = 1e9+; int T,n,m;
int fac[ONE], inv[ONE], D[ONE]; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} int Quickpow(int a, int b)
{
int res = ;
while(b)
{
if(b & ) res = (s64)res * a % MOD;
a = (s64)a * a % MOD;
b >>= ;
}
return res;
} void Deal_first()
{
int Limit = ONE-; fac[] = ;
for(int i=; i<=Limit; i++)
fac[i] = (s64)fac[i-] * i % MOD; inv[Limit] = Quickpow(fac[Limit], MOD-);
for(int i=Limit-; i>=; i--)
inv[i] = (s64)inv[i+] * (i+) % MOD; D[] = D[] = ;
for(int i=; i<=Limit; i++)
D[i] = (s64)(i-) * (D[i-] + D[i-]) % MOD;
} int C(int n,int m)
{
if(n == m) return ;
return (s64)fac[n] * inv[m] % MOD * inv[n-m] % MOD;
} int Query(int n,int m)
{
return (s64)C(n,m) * D[n-m] % MOD;
} int main()
{
Deal_first();
T = get();
while(T--)
{
n = get(); m = get();
printf("%d\n", Query(n,m));
}
}

  

【BZOJ4517】【SDOI2016】排列计数 [数论]的更多相关文章

  1. BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*

    BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...

  2. [BZOJ4517][SDOI2016]排列计数(错位排列)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1616  Solved: 985[Submit][Statu ...

  3. bzoj4517[Sdoi2016]排列计数(组合数,错排)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1792  Solved: 1111[Submit][Stat ...

  4. [BZOJ4517] [Sdoi2016] 排列计数 (数学)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  5. 2018.10.25 bzoj4517: [Sdoi2016]排列计数(组合数学)

    传送门 组合数学简单题. Ans=(nm)∗1Ans=\binom {n} {m}*1Ans=(mn​)∗1~(n−m)(n-m)(n−m)的错排数. 前面的直接线性筛逆元求. 后面的错排数递推式本蒟 ...

  6. BZOJ4517——[Sdoi2016]排列计数

    求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可 ...

  7. BZOJ4517: [Sdoi2016]排列计数

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  8. bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得

    这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...

  9. bzoj千题计划282:bzoj4517: [Sdoi2016]排列计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=4517 组合数+错排公式 #include<cstdio> #include<ios ...

  10. BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

随机推荐

  1. Java版office文档在线预览

    java将office文档pdf文档转换成swf文件在线预览 第一步,安装openoffice.org openoffice.org是一套sun的开源office办公套件,能在widows,linux ...

  2. UVALive - 6886 Golf Bot 多项式乘法(FFT)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/129724 Golf Bot Time Limit: 15000MS 题意 给你n个数,m个查询,对于每个查询 ...

  3. Java常用类之Math类

    Java 的常用类Math类: java.lang.Math 提供了系列的静态方法用于科学计算,其方法的参数和返回值类型一般为 double 类型. 如: 1. public static final ...

  4. 第三章——供机器读取的数据(XML)

    本书使用的文件.代码:https://github.com/huangtao36/data_wrangling 机器可读(machine readable)文件格式: 1.逗号分隔值(Comma-Se ...

  5. caffe2安装教程

    相比于网上的安装教程不如直接看官方安装教程:https://caffe2.ai/docs/getting-started.html?platform=windows&configuration ...

  6. 【Redis】- 缓存击穿

    什么是缓存击穿 在谈论缓存击穿之前,我们先来回忆下从缓存中加载数据的逻辑,如下图所示 因此,如果黑客每次故意查询一个在缓存内必然不存在的数据,导致每次请求都要去存储层去查询,这样缓存就失去了意义.如果 ...

  7. perf record -c

    如果perf record -c -c后面接的是sample_period,也就是说你让这个事件没 我的loop进程一直在执行,我的CPU的频率是2.6G hz,也就是说每一秒会有2,600,000, ...

  8. overflow:scroll 在ios 滚动卡顿

    使用 -webkit-overflow-scrolling 属性控制元素在移动设备上是否使用滚动回弹效果. 值 auto 使用普通滚动, 当手指从触摸屏上移开,滚动会立即停止. touch 使用具有回 ...

  9. snmpwalk的报文检测

    1.先用nc起一个监听的端口,然后看报文是不是正确的: 注:nc是一个模拟各种网络协议的东西,模拟服务器.客户端等: 2.触发告警,让他发报文: 3.用nc模拟一个服务端,启动一个udp的端口163: ...

  10. P2580 于是他错误的点名开始了

    题目背景 XS中学化学竞赛组教练是一个酷爱炉石的人. 他会一边搓炉石一边点名以至于有一天他连续点到了某个同学两次,然后正好被路过的校长发现了然后就是一顿欧拉欧拉欧拉(详情请见已结束比赛CON900). ...