大数的位数设置很坑,设成700会越界,设成800会超空间,最后设成了750居然就过了。。。。
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define LL long long
using namespace std; /*
* 完全大数模板
* 输出cin>>a
* 输出a.print();
* 注意这个输入不能自动去掉前导0的,可以先读入到char数组,去掉前导0,再用构造函数。
多组数据输入输出时在循环里面定义变量BigNum,在循坏外定义有时会出现WA
大数的位数可以根据题目的要求进行更改
*/
#define MAXN 9999
#define MAXSIZE 1010
#define DLEN 4
class BigNum
{
private:
int a[]; //可以控制大数的位数
int len; public:
BigNum()
{
len = ; //构造函数
memset(a, , sizeof(a));
}
BigNum(const int); //将一个int类型的变量转化成大数
BigNum(const char *); //将一个字符串类型的变量转化为大数
BigNum(const BigNum &); //拷贝构造函数
BigNum &operator=(const BigNum &); //重载赋值运算符,大数之间进行赋值运算
friend istream &operator>>(istream &, BigNum &); //重载输入运算符
friend ostream &operator<<(ostream &, BigNum &); //重载输出运算符
BigNum operator+(const BigNum &) const; //重载加法运算符,两个大数之间的相加运算
BigNum operator-(const BigNum &) const; //重载减法运算符,两个大数之间的相减运算
BigNum operator*(const BigNum &)const; //重载乘法运算符,两个大数之间的相乘运算
BigNum operator/(const int &) const; //重载除法运算符,大数对一个整数进行相除运算
BigNum operator^(const int &) const; //大数的n次方运算
int operator%(const int &) const; //大数对一个int类型的变量进行取模运算
bool operator>(const BigNum &T) const; //大数和另一个大数的大小比较
bool operator>(const int &t) const; //大数和一个int类型的变量的大小比较
void print(); //输出大数
};
BigNum::BigNum(const int b) //将一个int类型的变量转化为大数
{
int c, d = b;
len = ;
memset(a, , sizeof(a));
while (d > MAXN)
{
c = d - (d / (MAXN + )) * (MAXN + );
d = d / (MAXN + );
a[len++] = c;
}
a[len++] = d;
}
BigNum::BigNum(const char *s) //将一个字符串类型的变量转化为大数
{
int t, k, index, L, i;
memset(a, , sizeof(a));
L = strlen(s);
len = L / DLEN;
if (L % DLEN)
len++;
index = ;
for (i = L - ; i >= ; i -= DLEN)
{
t = ;
k = i - DLEN + ;
if (k < )
k = ;
for (int j = k; j <= i; j++)
t = t * + s[j] - '';
a[index++] = t;
}
}
BigNum::BigNum(const BigNum &T) : len(T.len) //拷贝构造函数
{
int i;
memset(a, , sizeof(a));
for (i = ; i < len; i++)
a[i] = T.a[i];
}
BigNum &BigNum::operator=(const BigNum &n) //重载赋值运算符,大数之间赋值运算
{
int i;
len = n.len;
memset(a, , sizeof(a));
for (i = ; i < len; i++)
a[i] = n.a[i];
return *this;
}
istream &operator>>(istream &in, BigNum &b)
{
char ch[MAXSIZE * ];
int i = -;
in >> ch;
int L = strlen(ch);
int count = , sum = ;
for (i = L - ; i >= ;)
{
sum = ;
int t = ;
for (int j = ; j < && i >= ; j++, i--, t *= )
{
sum += (ch[i] - '') * t;
}
b.a[count] = sum;
count++;
}
b.len = count++;
return in;
}
ostream &operator<<(ostream &out, BigNum &b) //重载输出运算符
{
int i;
cout << b.a[b.len - ];
for (i = b.len - ; i >= ; i--)
{
printf("%04d", b.a[i]);
}
return out;
}
BigNum BigNum::operator+(const BigNum &T) const //两个大数之间的相加运算
{
BigNum t(*this);
int i, big;
big = T.len > len ? T.len : len;
for (i = ; i < big; i++)
{
t.a[i] += T.a[i];
if (t.a[i] > MAXN)
{
t.a[i + ]++;
t.a[i] -= MAXN + ;
}
}
if (t.a[big] != )
t.len = big + ;
else
t.len = big;
return t;
}
BigNum BigNum::operator-(const BigNum &T) const //两个大数之间的相减运算
{
int i, j, big;
bool flag;
BigNum t1, t2;
if (*this > T)
{
t1 = *this;
t2 = T;
flag = ;
}
else
{
t1 = T;
t2 = *this;
flag = ;
}
big = t1.len;
for (i = ; i < big; i++)
{
if (t1.a[i] < t2.a[i])
{
j = i + ;
while (t1.a[j] == )
j++;
t1.a[j--]--;
while (j > i)
t1.a[j--] += MAXN;
t1.a[i] += MAXN + - t2.a[i];
}
else
t1.a[i] -= t2.a[i];
}
t1.len = big;
while (t1.a[t1.len - ] == && t1.len > )
{
t1.len--;
big--;
}
if (flag)
t1.a[big - ] = - t1.a[big - ];
return t1;
}
BigNum BigNum::operator*(const BigNum &T) const //两个大数之间的相乘
{
BigNum ret;
int i, j, up;
int temp, temp1;
for (i = ; i < len; i++)
{
up = ;
for (j = ; j < T.len; j++)
{
temp = a[i] * T.a[j] + ret.a[i + j] + up;
if (temp > MAXN)
{
temp1 = temp - temp / (MAXN + ) * (MAXN + );
up = temp / (MAXN + );
ret.a[i + j] = temp1;
}
else
{
up = ;
ret.a[i + j] = temp;
}
}
if (up != )
ret.a[i + j] = up;
}
ret.len = i + j;
while (ret.a[ret.len - ] == && ret.len > )
ret.len--;
return ret;
}
BigNum BigNum::operator/(const int &b) const //大数对一个整数进行相除运算
{
BigNum ret;
int i, down = ;
for (i = len - ; i >= ; i--)
{
ret.a[i] = (a[i] + down * (MAXN + )) / b;
down = a[i] + down * (MAXN + ) - ret.a[i] * b;
}
ret.len = len;
while (ret.a[ret.len - ] == && ret.len > )
ret.len--;
return ret;
}
int BigNum::operator%(const int &b) const //大数对一个 int类型的变量进行取模
{
int i, d = ;
for (i = len - ; i >= ; i--)
d = ((d * (MAXN + )) % b + a[i]) % b;
return d;
}
BigNum BigNum::operator^(const int &n) const //大数的n次方运算
{
BigNum t, ret();
int i;
if (n < )
exit(-);
if (n == )
return ;
if (n == )
return *this;
int m = n;
while (m > )
{
t = *this;
for (i = ; (i << ) <= m; i <<= )
t = t * t;
m -= i;
ret = ret * t;
if (m == )
ret = ret * (*this);
}
return ret;
}
bool BigNum::operator>(const BigNum &T) const //大数和另一个大数的大小比较
{
int ln;
if (len > T.len)
return true;
else if (len == T.len)
{
ln = len - ;
while (a[ln] == T.a[ln] && ln >= )
ln--;
if (ln >= && a[ln] > T.a[ln])
return true;
else
return false;
}
else
return false;
}
bool BigNum::operator>(const int &t) const //大数和一个int类型的变量的大小比较
{
BigNum b(t);
return *this > b;
}
void BigNum::print() //输出大数
{
int i;
printf("%d", a[len - ]);
for (i = len - ; i >= ; i--)
printf("%04d", a[i]);
} BigNum f[ + ];
int main()
{
BigNum tmp();
f[] = tmp;
f[] = tmp;
f[] = tmp;
f[] = tmp;
for (int i = ; i < ; i++)
{
f[i] = f[i - ] + f[i - ] + f[i - ] + f[i - ];
}
int x;
while (scanf("%d", &x) != EOF)
{
f[x].print();
printf("\n");
} return ;
}

hdu Hat's Fibonacci(用了kuangbin模板)的更多相关文章

  1. hdu Hat's Fibonacci

    import java.math.BigInteger; import java.util.*; public class Main { public static void main(String ...

  2. hdu 1250 Hat's Fibonacci

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1250 Hat's Fibonacci Description A Fibonacci sequence ...

  3. HDU 1250 Hat's Fibonacci(大数相加)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1250 Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Ot ...

  4. HDU 1250 Hat's Fibonacci (递推、大数加法、string)

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  5. Hat's Fibonacci(大数加法+直接暴力)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1250 hdu1250: Hat's Fibonacci Time Limit: 2000/1000 M ...

  6. HDUOJ----1250 Hat's Fibonacci

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  7. Hat's Fibonacci(大数,好)

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  8. hdu 5895 广义Fibonacci数列

    Mathematician QSC Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  9. (二维数组 亿进制 或 滚动数组) Hat's Fibonacci hdu1250

    Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. Java基础重点知识之欣欣向然

    题目: 第一题:二重循环: public class Text01 { //完成歌曲排序的效果 public static void main(String[] args) { String[] zi ...

  2. Web.py报错:OSError: No socket could be created -- (('0.0.0.0', 8080):

    web.py报错 Python代码: import web urls = ( '/(.*)', 'hello' ) app = web.application(urls, globals()) cla ...

  3. Oracle中创建Job实现自动插入值操作

    在PL/SQL Developer中创建Job --临时测试表 create table test_job ( id ), c_date date ); --临时序列 create sequence ...

  4. JAVA基本数据类型、引用数据类型-参数传递详解

    1:基本类型的参数传值 对于基本数据类型,修改这个值并不会影响作为参数传进来的那个变量,因为你修改的是方法的局部变量,是一个副本.实参的精度级别应等于或低于形参的精度级别,否则报错. class JB ...

  5. javascript 匿名函数及闭包----转载

    网上很多解释,我无法理解,我想知道原理...这篇文章应该可以透彻一点Query片段:view plaincopy to clipboardprint? (function(){      //这里忽略 ...

  6. SQL Server ->> PARSE函数

    这个函数和TRY_PARSE一起从SQL Server 2012引入.它的存在是因为TRY_PARSE一旦遇到无法成功转换就会以NULL值返回,而如果你希望以报错的形式,你就可以用PARSE. 比如 ...

  7. input输入框数字验证

    正则限制input只能输入大于零的数字:onkeyup="this.value=this.value.replace(/\D|^0/g,'')" onafterpaste=&quo ...

  8. 【Leetcode】【Medium】Linked List Cycle

    Given a linked list, determine if it has a cycle in it. 解题: 判断单链表是否具有环,使用两个指针once和twice遍历链表,once一次走一 ...

  9. 【Leetcode】【Easy】Path Sum

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

  10. dbms_stats应用相关

    Q:     DBMS_STATS.GATHER_SCHEMA_STATS ('schema_name');        使用这个收集统计信息,estimate_percent使用默认值       ...