Piggy-Bank

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18924    Accepted Submission(s): 9579

Problem Description
Before
ACM can do anything, a budget must be prepared and the necessary
financial support obtained. The main income for this action comes from
Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some
ACM member has any small money, he takes all the coins and throws them
into a piggy-bank. You know that this process is irreversible, the coins
cannot be removed without breaking the pig. After a sufficiently long
time, there should be enough cash in the piggy-bank to pay everything
that needs to be paid.

But there is a big problem with
piggy-banks. It is not possible to determine how much money is inside.
So we might break the pig into pieces only to find out that there is not
enough money. Clearly, we want to avoid this unpleasant situation. The
only possibility is to weigh the piggy-bank and try to guess how many
coins are inside. Assume that we are able to determine the weight of the
pig exactly and that we know the weights of all coins of a given
currency. Then there is some minimum amount of money in the piggy-bank
that we can guarantee. Your task is to find out this worst case and
determine the minimum amount of cash inside the piggy-bank. We need your
help. No more prematurely broken pigs!

 
Input
The
input consists of T test cases. The number of them (T) is given on the
first line of the input file. Each test case begins with a line
containing two integers E and F. They indicate the weight of an empty
pig and of the pig filled with coins. Both weights are given in grams.
No pig will weigh more than 10 kg, that means 1 <= E <= F <=
10000. On the second line of each test case, there is an integer number N
(1 <= N <= 500) that gives the number of various coins used in
the given currency. Following this are exactly N lines, each specifying
one coin type. These lines contain two integers each, Pand W (1 <= P
<= 50000, 1 <= W <=10000). P is the value of the coin in
monetary units, W is it's weight in grams.
 
Output
Print
exactly one line of output for each test case. The line must contain
the sentence "The minimum amount of money in the piggy-bank is X." where
X is the minimum amount of money that can be achieved using coins with
the given total weight. If the weight cannot be reached exactly, print a
line "This is impossible.".
 
Sample Input
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
 
Sample Output
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
 
题意:一个存钱罐有两个重量(单位为克),一个空的时候的重量,一个满的时候的重量,给定n组硬币,每组硬币都有它的价值和重量,每种硬币数量无穷多,求当前重量的存钱罐里面的钱最少为多少.
分析:每种物品无限多,可以分析出来是个完全背包问题.dp[i]代表钱罐重量为i时能够装的最少价值。
     状态转移方程 dp[i] = min(dp[i],dp[i-V[i]]+W[i]) 其中V[i]是正向枚举的,因为每种物品无限多.
///分析:每种物品无限多,可以分析出来是个完全背包问题.dp[i]代表钱罐重量为i时能够装的最少价值。
///状态转移方程 dp[i] = min(dp[i],dp[i-V[i]]+W[i]) 其中V[i]是正向枚举的,因为每种物品无限多.
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
#include <math.h>
#define N 10005
using namespace std; int dp[N];
int V[],W[];
int INF = ;
int main()
{
int tcase ;
scanf("%d",&tcase);
while(tcase--){
int E,F,n;
scanf("%d%d",&E,&F);
F-=E;
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d%d",&W[i],&V[i]);
}
for(int i=;i<=F;i++) dp[i] = INF;
dp[] = ; ///初始化重量为0的背包能够装的最大价值为0
for(int i=;i<=n;i++){
for(int v=V[i];v<=F;v++){
dp[v] = min(dp[v],dp[v-V[i]]+W[i]);
}
}
if(dp[F]<INF)
printf("The minimum amount of money in the piggy-bank is %d.\n",dp[F]);
else printf("This is impossible.\n");
}
return ;
}

hdu 1114(完全背包)的更多相关文章

  1. HDU 1114 完全背包 HDU 2191 多重背包

    HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means ...

  2. HDU 1114 完全背包+判断能否装满

    题意 给出一个存钱罐里的钱币重量 给出可能的n种钱币重量以及价值 求存钱罐中钱币的最小价值 若不可能另有输出 在裸的完全背包上加了一点东西 即判断这个背包能否被装满 初始化 dp[0]=0 其余的都使 ...

  3. Piggy-Bank HDU - 1114 完全背包

    #include<iostream> #include<cstring> using namespace std; const int INF=0x3f3f3f3f; ]; s ...

  4. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  5. HDU 1114 Piggy-Bank 完全背包 dp

    http://acm.hdu.edu.cn/showproblem.php?pid=1114 完全背包的题目,要求输出最小价值.然后一定要把给出的背包重量全部用完. 就是问一个背包为k的大小,n件物品 ...

  6. Piggy-Bank(HDU 1114)背包的一些基本变形

    Piggy-Bank  HDU 1114 初始化的细节问题: 因为要求恰好装满!! 所以初始化要注意: 初始化时除了F[0]为0,其它F[1..V]均设为−∞. 又这个题目是求最小价值: 则就是初始化 ...

  7. HDU 1114 Piggy-Bank(一维背包)

    题目地址:HDU 1114 把dp[0]初始化为0,其它的初始化为INF.这样就能保证最后的结果一定是满的,即一定是从0慢慢的加上来的. 代码例如以下: #include <algorithm& ...

  8. hdu 1114 dp动规 Piggy-Bank

    Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit S ...

  9. poj 1114 完全背包 dp

    如果可以每个物品拿多件,则从小到大遍历,否则从大到小遍历. G - Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO ...

随机推荐

  1. android源码了解dex加载流程

    源码版本:4.4.4_r1 http://www.cnblogs.com/lanrenxinxin/p/4712224.html http://wangzhixian.org/Others/DexCl ...

  2. ACE线程管理机制-并发控制(1)

    转载于:http://www.cnblogs.com/TianFang/archive/2006/12/04/581771.html ACE Lock类属 锁类属包含的类包装简单的锁定机制,比如互斥体 ...

  3. 神经网络CNN训练心得--调参经验

    1.样本要随机化,防止大数据淹没小数据 2.样本要做归一化.关于归一化的好处请参考:为何需要归一化处理3.激活函数要视样本输入选择(多层神经网络一般使用relu)4.mini batch很重要,几百是 ...

  4. 制定clone的用户名

    git clone http://username:password@127.0.0.1/res/res.git指定用户名clone,有时需要切换clone 的用户名,不切换,会默认config us ...

  5. python读书笔记-《A Byte of Python》中文第三版后半部分

    编辑器:windows,linux 不要用notepad,缩进糟糕 -------------- 5.18缩进 同一层次的语句必须有相同的缩进.每一组这样的语句称为一个块. i = 5 2  prin ...

  6. oracle to_char格式数值

    C:\Users\XXX>sqlplus / as sysdba SQL :: Copyright (c) , , Oracle. All Rights Reserved. 连接到: Oracl ...

  7. margin和padding

    一.margin基础语法与结构 1.margin语法 Margin:10px Margin的值是数字+html单位,同时也可以为auto(自动.自适应) 2.应用结构 Div{margin:10px} ...

  8. 可以随时拿取spring容器中Bean的工具类

    前言 在Spring帮我们管理bean后,编写一些工具类的时候需要从容器中拿到一些对象来做一些操作,比如字典缓存工具类,在没有找到字典缓存时,需要dao对象从数据库load一次,再次存入缓存中.此时需 ...

  9. codevs 1332 上白泽慧音

    1332 上白泽慧音  时间限制: 1 s  空间限制: 128000 KB     题目描述 Description 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大 ...

  10. 策略模式 C#

    策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换.策略模式让算法独立于使用它的客户而独立变化. 抽象策略角色: 策略类,通常由一个接口或者抽象类实现. 具体策略角色:包装了 ...