本篇从二个方面讲解:

高级特性:

1、Spark Streaming资源动态分配

2、Spark Streaming动态控制消费速率

原理剖析,动态控制消费速率其后面存在一套理论,资源动态分配也有一套理论。

先讲理论,后面讨论。

为什么要动态资源分配和动态控制速率?

Spark默认是先分配资源,然后计算;粗粒度的分配方式,资源提前分配好,有计算任务提前分配好资源;

不好的地方:从Spark Streaming角度讲有高峰值和低峰值,如果资源分配从高峰值、低峰值考虑都有大量资源的浪费。

其实当年Spark Streaming参考了Storm的设计思想,在其基础上构建的Spark Streaming2.0x内核有

很大变化,此框架的最大好处就是和兄弟框架联手。我们考虑Spark Streaming资源分配按高峰值分配的话,就会造成预分配资源浪费,尤其

是低峰值造成大量资源浪费。

Spark Streaming本身基于Spark Core的,Spark Core的核心是SparkContext对象,从SparkContext类代码的556行开始,支持资源的动态分配,源码如下:

// Optionally scale number of executors dynamically based on workload. Exposed for testing.
val dynamicAllocationEnabled = Utils.isDynamicAllocationEnabled(_conf)
if (!dynamicAllocationEnabled && _conf.getBoolean("spark.dynamicAllocation.enabled", false)) {
  logWarning("Dynamic Allocation and num executors both set, thus
dynamic allocation disabled.")
}

_executorAllocationManager =
  if (dynamicAllocationEnabled)
{
    Some(new ExecutorAllocationManager(this, listenerBus, _conf))
  } else {
    None
  }
_executorAllocationManager.foreach(_.start())

_cleaner =
  if (_conf.getBoolean("spark.cleaner.referenceTracking", true)) {
    Some(new ContextCleaner(this))
  } else {
    None
  }
_cleaner.foreach(_.start())

通过配置参数:spark.dynamicAllocation.enabled看是否需要开启Executor的动态分配:

/**
 * Return whether dynamic allocation is enabled in the given conf
 * Dynamic allocation and explicitly setting the number of executors are inherently
 * incompatible. In environments where dynamic allocation is turned on by default,
 * the latter should override the former (SPARK-9092).
 */
def isDynamicAllocationEnabled(conf: SparkConf): Boolean = {
  conf.getBoolean("spark.dynamicAllocation.enabled", false) &&
    conf.getInt("spark.executor.instances", 0) == 0
}
根据代码发现,你可以在程序运行时不断设置spark.dynamicAllocation.enabled参数的值,如果支持资源动态分配的话就使用ExecutorAllocationManager类:
/**
 * An agent that dynamically allocates and removes executors based on the workload.
 * The ExecutorAllocationManager maintains a moving target number of executors which is periodically
 * synced to the cluster manager. The target starts at a configured initial value and changes with
 * the number of pending and running tasks.
 * Decreasing the target number of executors happens when the current target is more than needed to
 * handle the current load. The target number of executors is always truncated to the number of
 * executors that could run all current running and pending tasks at once.
 *
 * Increasing the target number of executors happens in response to backlogged tasks waiting to be
 * scheduled. If the scheduler queue is not drained in N seconds, then new executors are added. If
 * the queue persists for another M seconds, then more executors are added and so on. The number
 * added in each round increases exponentially from the previous round until an upper bound has been
 * reached. The upper bound is based both on a configured property and on the current number of
 * running and pending tasks, as described above.
 *
 * The rationale for the exponential increase is twofold: (1) Executors should be added slowly
 * in the beginning in case the number of extra executors needed turns out to be small. Otherwise,
 * we may add more executors than we need just to remove them later. (2) Executors should be added
 * quickly over time in case the maximum number of executors is very high. Otherwise, it will take
 * a long time to ramp up under heavy workloads.
 *
 * The remove policy is simpler: If an executor has been idle for K seconds, meaning it has not
 * been scheduled to run any tasks, then it is removed.
 *
 * There is no retry logic in either case because we make the assumption that the cluster manager
 * will eventually fulfill all requests it receives asynchronously.
 *
 * The relevant Spark properties include the following:
 *
 *   spark.dynamicAllocation.enabled - Whether this feature is enabled
 *   spark.dynamicAllocation.minExecutors - Lower bound on the number of executors
 *   spark.dynamicAllocation.maxExecutors - Upper bound on the number of executors
 *   spark.dynamicAllocation.initialExecutors - Number of executors to start with
 *
 *   spark.dynamicAllocation.schedulerBacklogTimeout (M) -
 *     If there are backlogged tasks for this duration, add new executors
 *
 *   spark.dynamicAllocation.sustainedSchedulerBacklogTimeout (N) -
 *     If the backlog is sustained for this duration, add more executors
 *     This is used only after the initial backlog timeout is exceeded
 *
 *   spark.dynamicAllocation.executorIdleTimeout (K) -
 *     If an executor has been idle for this duration, remove it
 */
private[spark] class ExecutorAllocationManager(
    client: ExecutorAllocationClient,
    listenerBus: LiveListenerBus,
    conf: SparkConf)
  extends Logging {   allocationManager =>   import ExecutorAllocationManager._   // Lower and upper bounds on the number of executors.
  private val minNumExecutors = conf.getInt("spark.dynamicAllocation.minExecutors", 0)
  private val maxNumExecutors = conf.getInt("spark.dynamicAllocation.maxExecutors",
    Integer.MAX_VALUE)

动态控制执行的executors个数。扫描executor情况,正在运行的Stage,增加executor或减少executor个数,例如减少executor情况;例如60秒发现一个任务都没有运行就会remove executor;当前应用程序含有所有启动的executors,在driver保持对executors的引用。

由于时钟,就有不断的循环、就有增加和删除exector的操作。

之所以动态就是有时钟,每隔固定周期看看。需要删除的话发一个kill消息,需要添加的话就往worker发消息增加一个executor。

我们看一下Master的scheduler方法:

/**
 * Schedule the currently available resources among waiting apps. This method will be called
 * every time a new app joins or resource availability changes.
 */
private def schedule(): Unit = {
  if (state != RecoveryState.ALIVE) { return }
  // Drivers take strict precedence over executors
  val shuffledWorkers = Random.shuffle(workers) // Randomization helps balance drivers
  for (worker <- shuffledWorkers if worker.state == WorkerState.ALIVE) {
    for (driver <- waitingDrivers) {
      if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) {
        launchDriver(worker, driver)
        waitingDrivers -= driver
      }
    }
  }
  startExecutorsOnWorkers()
}

需要实现资源动态调度的话需要一个时钟需要协助,资源默认分配的方式在master的scheduler。

如果通过配置动态分配资源会调用ExecutorAllocationManager类的scheduler方法:

/**
 * This is called at a fixed interval to regulate the number of pending executor requests
 * and number of executors running.
 *
 * First, adjust our requested executors based on the add time and our current needs.
 * Then, if the remove time for an existing executor has expired, kill the executor.
 *
 * This is factored out into its own method for testing.
 */
private def schedule(): Unit = synchronized {
  val now = clock.getTimeMillis   updateAndSyncNumExecutorsTarget(now)   removeTimes.retain { case (executorId, expireTime) =>
    val expired = now >= expireTime
    if (expired) {
      initializing = false
     
removeExecutor(executorId)
    }
    !expired
  }
}

内部方法会被周期性的触发scheduler,周期性执行。

保持executorId,不断注册executor。

/**
 * Register for scheduler callbacks to decide when to add and remove executors, and start
 * the scheduling task.
 */
def start(): Unit = {
  listenerBus.addListener(listener)   val scheduleTask = new Runnable() {
    override def run(): Unit = {
      try {
        schedule()
      } catch {
        case ct: ControlThrowable =>
          throw ct
        case t: Throwable =>
          logWarning(s"Uncaught exception in thread ${Thread.currentThread().getName}", t)
      }
    }
  }
  executor.scheduleAtFixedRate(scheduleTask, 0, intervalMillis, TimeUnit.MILLISECONDS)
}

从调整周期角度,batchDuration角度来调整,10秒钟,是增加executor或减少executor,需对数据规模评估,具有资源评估,对已有资源闲置做评估;例如是否决定需要更多的资源,数据在batchDuration流进来就会有数据分片,每个数据分片处理的时候需要跟多的cores,如果不够就需要申请跟多的executors。

Ss提供弹性机制,看下溜进来的速度和处理速度关系,是否来得及处理,来不及处理的话会动态控制数据流入的速度,这里有个控制速率的参数:ss。backpressuareenable参数。

Spark Streaming本身有对rateController控制,在运行时手动控制流入的速度。如果delay,则控制速度,流入慢点,需要调整流入的数据和处理的时间比例关系。

感谢王家林老师的知识分享

Spark Streaming发行版笔记17

新浪微博:http://weibo.com/ilovepains

微信公众号:DT_Spark

博客:http://blog.sina.com.cn/ilovepains

手机:18610086859

QQ:1740415547

邮箱:18610086859@vip.126.com

Spark Streaming资源动态分配和动态控制消费速率的更多相关文章

  1. Spark Streaming资源动态申请和动态控制消费速率剖析

    本期内容 : Spark Streaming资源动态分配 Spark Streaming动态控制消费速率 为什么需要动态处理 : Spark 属于粗粒度资源分配,也就是在默认情况下是先分配好资源然后再 ...

  2. spark streaming从指定offset处消费Kafka数据

    spark streaming从指定offset处消费Kafka数据 -- : 770人阅读 评论() 收藏 举报 分类: spark() 原文地址:http://blog.csdn.net/high ...

  3. spark streaming - kafka updateStateByKey 统计用户消费金额

    场景 餐厅老板想要统计每个用户来他的店里总共消费了多少金额,我们可以使用updateStateByKey来实现 从kafka接收用户消费json数据,统计每分钟用户的消费情况,并且统计所有时间所有用户 ...

  4. spark Streaming与kafka的集成消费

    Spark 2.3.3    Kafka   2.11-1.0.2        Java  jdk1.8.0_191           Hbase 1.2.11 from pyspark impo ...

  5. kafka broker Leader -1引起spark Streaming不能消费的故障解决方法

    一.问题描述:Kafka生产集群中有一台机器cdh-003由于物理故障原因挂掉了,并且系统起不来了,使得线上的spark Streaming实时任务不能正常消费,重启实时任务都不行.查看kafka t ...

  6. Spark Streaming之四:Spark Streaming 与 Kafka 集成分析

    前言 Spark Streaming 诞生于2013年,成为Spark平台上流式处理的解决方案,同时也给大家提供除Storm 以外的另一个选择.这篇内容主要介绍Spark Streaming 数据接收 ...

  7. 4. Spark Streaming解析

    4.1 初始化StreamingContext import org.apache.spark._ import org.apache.spark.streaming._ val conf = new ...

  8. spark streaming 对接kafka记录

    spark streaming 对接kafka 有两种方式: 参考: http://group.jobbole.com/15559/ http://blog.csdn.net/kwu_ganymede ...

  9. spark Streaming的Receiver和Direct的优化对比

    Direct 1.简化并行读取:如果要读取多个partition,不需要创建多个输入DStream然后对它们进行union操作.Spark会创建跟Kafka partition一样多的RDD part ...

随机推荐

  1. [Android] 按钮单击事件的五种写法

    在平时学习安卓的过程中,不论是看视频还是看博客,我发现每个人对代码的写法都有不同的偏好,比较明显的就是对控件响应事件的写法的不同.所以我想把这些写法总结一下,比较下各种写法的优劣,希望可以让自己可以灵 ...

  2. AC日记——「SCOI2016」幸运数字 LiBreOJ 2013

    「SCOI2016」幸运数字 思路: 线性基: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 20005 # ...

  3. vue-cli中引入jquery方法

    这里有个详解,当然,仅仅是安装jq的话下面这个办法就够了.传送门 在webpack.base.conf.js里加入 var webpack = require("webpack") ...

  4. 【笔试题】Java 易错题精选

    笔试题 Java 易错题精选 1.写出下列程序的运行结果( )String 不变性Java 值传递 public class Test { public static void main(String ...

  5. DaemonSet

    What is a DaemonSet? DaemonSet能够让所有(或者一些特定)的Node节点运行同一个pod.当节点加入到kubernetes集群中,pod会被(DaemonSet)调度到该节 ...

  6. 转:攻击JavaWeb应用[1]-javaEE基础

    http://www.cnblogs.com/oh3o/p/3224562.html JSP: 全名为java server page,其根本是一个简化的Servlet. Servlet:Servle ...

  7. 北邮校赛 H. Black-white Tree (猜的)

    H. Black-white Tree 2017- BUPT Collegiate Programming Contest - sync 时间限制 1000 ms 内存限制 65536 KB 题目描述 ...

  8. cogs 2039. 树的统计

    2039. 树的统计 ★★   输入文件:counttree.in   输出文件:counttree.out   简单对比时间限制:1 s   内存限制:128 MB [题目描述] 关于树的统计问题有 ...

  9. JZYZOJ 1360 [usaco2011feb]人品问题 DP 树状数组 离散化

    http://172.20.6.3/Problem_Show.asp?id=1360   好想好写   代码 #include<iostream> #include<cstdio&g ...

  10. 【BFS】bzoj1054 [HAOI2008]移动玩具

    暴搜吧,可以哈希一下,但是懒得写哈希了,所以慢得要死. Code: #include<cstdio> #include<queue> #include<set> # ...