本篇从二个方面讲解:

高级特性:

1、Spark Streaming资源动态分配

2、Spark Streaming动态控制消费速率

原理剖析,动态控制消费速率其后面存在一套理论,资源动态分配也有一套理论。

先讲理论,后面讨论。

为什么要动态资源分配和动态控制速率?

Spark默认是先分配资源,然后计算;粗粒度的分配方式,资源提前分配好,有计算任务提前分配好资源;

不好的地方:从Spark Streaming角度讲有高峰值和低峰值,如果资源分配从高峰值、低峰值考虑都有大量资源的浪费。

其实当年Spark Streaming参考了Storm的设计思想,在其基础上构建的Spark Streaming2.0x内核有

很大变化,此框架的最大好处就是和兄弟框架联手。我们考虑Spark Streaming资源分配按高峰值分配的话,就会造成预分配资源浪费,尤其

是低峰值造成大量资源浪费。

Spark Streaming本身基于Spark Core的,Spark Core的核心是SparkContext对象,从SparkContext类代码的556行开始,支持资源的动态分配,源码如下:

// Optionally scale number of executors dynamically based on workload. Exposed for testing.
val dynamicAllocationEnabled = Utils.isDynamicAllocationEnabled(_conf)
if (!dynamicAllocationEnabled && _conf.getBoolean("spark.dynamicAllocation.enabled", false)) {
  logWarning("Dynamic Allocation and num executors both set, thus
dynamic allocation disabled.")
}

_executorAllocationManager =
  if (dynamicAllocationEnabled)
{
    Some(new ExecutorAllocationManager(this, listenerBus, _conf))
  } else {
    None
  }
_executorAllocationManager.foreach(_.start())

_cleaner =
  if (_conf.getBoolean("spark.cleaner.referenceTracking", true)) {
    Some(new ContextCleaner(this))
  } else {
    None
  }
_cleaner.foreach(_.start())

通过配置参数:spark.dynamicAllocation.enabled看是否需要开启Executor的动态分配:

/**
 * Return whether dynamic allocation is enabled in the given conf
 * Dynamic allocation and explicitly setting the number of executors are inherently
 * incompatible. In environments where dynamic allocation is turned on by default,
 * the latter should override the former (SPARK-9092).
 */
def isDynamicAllocationEnabled(conf: SparkConf): Boolean = {
  conf.getBoolean("spark.dynamicAllocation.enabled", false) &&
    conf.getInt("spark.executor.instances", 0) == 0
}
根据代码发现,你可以在程序运行时不断设置spark.dynamicAllocation.enabled参数的值,如果支持资源动态分配的话就使用ExecutorAllocationManager类:
/**
 * An agent that dynamically allocates and removes executors based on the workload.
 * The ExecutorAllocationManager maintains a moving target number of executors which is periodically
 * synced to the cluster manager. The target starts at a configured initial value and changes with
 * the number of pending and running tasks.
 * Decreasing the target number of executors happens when the current target is more than needed to
 * handle the current load. The target number of executors is always truncated to the number of
 * executors that could run all current running and pending tasks at once.
 *
 * Increasing the target number of executors happens in response to backlogged tasks waiting to be
 * scheduled. If the scheduler queue is not drained in N seconds, then new executors are added. If
 * the queue persists for another M seconds, then more executors are added and so on. The number
 * added in each round increases exponentially from the previous round until an upper bound has been
 * reached. The upper bound is based both on a configured property and on the current number of
 * running and pending tasks, as described above.
 *
 * The rationale for the exponential increase is twofold: (1) Executors should be added slowly
 * in the beginning in case the number of extra executors needed turns out to be small. Otherwise,
 * we may add more executors than we need just to remove them later. (2) Executors should be added
 * quickly over time in case the maximum number of executors is very high. Otherwise, it will take
 * a long time to ramp up under heavy workloads.
 *
 * The remove policy is simpler: If an executor has been idle for K seconds, meaning it has not
 * been scheduled to run any tasks, then it is removed.
 *
 * There is no retry logic in either case because we make the assumption that the cluster manager
 * will eventually fulfill all requests it receives asynchronously.
 *
 * The relevant Spark properties include the following:
 *
 *   spark.dynamicAllocation.enabled - Whether this feature is enabled
 *   spark.dynamicAllocation.minExecutors - Lower bound on the number of executors
 *   spark.dynamicAllocation.maxExecutors - Upper bound on the number of executors
 *   spark.dynamicAllocation.initialExecutors - Number of executors to start with
 *
 *   spark.dynamicAllocation.schedulerBacklogTimeout (M) -
 *     If there are backlogged tasks for this duration, add new executors
 *
 *   spark.dynamicAllocation.sustainedSchedulerBacklogTimeout (N) -
 *     If the backlog is sustained for this duration, add more executors
 *     This is used only after the initial backlog timeout is exceeded
 *
 *   spark.dynamicAllocation.executorIdleTimeout (K) -
 *     If an executor has been idle for this duration, remove it
 */
private[spark] class ExecutorAllocationManager(
    client: ExecutorAllocationClient,
    listenerBus: LiveListenerBus,
    conf: SparkConf)
  extends Logging {   allocationManager =>   import ExecutorAllocationManager._   // Lower and upper bounds on the number of executors.
  private val minNumExecutors = conf.getInt("spark.dynamicAllocation.minExecutors", 0)
  private val maxNumExecutors = conf.getInt("spark.dynamicAllocation.maxExecutors",
    Integer.MAX_VALUE)

动态控制执行的executors个数。扫描executor情况,正在运行的Stage,增加executor或减少executor个数,例如减少executor情况;例如60秒发现一个任务都没有运行就会remove executor;当前应用程序含有所有启动的executors,在driver保持对executors的引用。

由于时钟,就有不断的循环、就有增加和删除exector的操作。

之所以动态就是有时钟,每隔固定周期看看。需要删除的话发一个kill消息,需要添加的话就往worker发消息增加一个executor。

我们看一下Master的scheduler方法:

/**
 * Schedule the currently available resources among waiting apps. This method will be called
 * every time a new app joins or resource availability changes.
 */
private def schedule(): Unit = {
  if (state != RecoveryState.ALIVE) { return }
  // Drivers take strict precedence over executors
  val shuffledWorkers = Random.shuffle(workers) // Randomization helps balance drivers
  for (worker <- shuffledWorkers if worker.state == WorkerState.ALIVE) {
    for (driver <- waitingDrivers) {
      if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) {
        launchDriver(worker, driver)
        waitingDrivers -= driver
      }
    }
  }
  startExecutorsOnWorkers()
}

需要实现资源动态调度的话需要一个时钟需要协助,资源默认分配的方式在master的scheduler。

如果通过配置动态分配资源会调用ExecutorAllocationManager类的scheduler方法:

/**
 * This is called at a fixed interval to regulate the number of pending executor requests
 * and number of executors running.
 *
 * First, adjust our requested executors based on the add time and our current needs.
 * Then, if the remove time for an existing executor has expired, kill the executor.
 *
 * This is factored out into its own method for testing.
 */
private def schedule(): Unit = synchronized {
  val now = clock.getTimeMillis   updateAndSyncNumExecutorsTarget(now)   removeTimes.retain { case (executorId, expireTime) =>
    val expired = now >= expireTime
    if (expired) {
      initializing = false
     
removeExecutor(executorId)
    }
    !expired
  }
}

内部方法会被周期性的触发scheduler,周期性执行。

保持executorId,不断注册executor。

/**
 * Register for scheduler callbacks to decide when to add and remove executors, and start
 * the scheduling task.
 */
def start(): Unit = {
  listenerBus.addListener(listener)   val scheduleTask = new Runnable() {
    override def run(): Unit = {
      try {
        schedule()
      } catch {
        case ct: ControlThrowable =>
          throw ct
        case t: Throwable =>
          logWarning(s"Uncaught exception in thread ${Thread.currentThread().getName}", t)
      }
    }
  }
  executor.scheduleAtFixedRate(scheduleTask, 0, intervalMillis, TimeUnit.MILLISECONDS)
}

从调整周期角度,batchDuration角度来调整,10秒钟,是增加executor或减少executor,需对数据规模评估,具有资源评估,对已有资源闲置做评估;例如是否决定需要更多的资源,数据在batchDuration流进来就会有数据分片,每个数据分片处理的时候需要跟多的cores,如果不够就需要申请跟多的executors。

Ss提供弹性机制,看下溜进来的速度和处理速度关系,是否来得及处理,来不及处理的话会动态控制数据流入的速度,这里有个控制速率的参数:ss。backpressuareenable参数。

Spark Streaming本身有对rateController控制,在运行时手动控制流入的速度。如果delay,则控制速度,流入慢点,需要调整流入的数据和处理的时间比例关系。

感谢王家林老师的知识分享

Spark Streaming发行版笔记17

新浪微博:http://weibo.com/ilovepains

微信公众号:DT_Spark

博客:http://blog.sina.com.cn/ilovepains

手机:18610086859

QQ:1740415547

邮箱:18610086859@vip.126.com

Spark Streaming资源动态分配和动态控制消费速率的更多相关文章

  1. Spark Streaming资源动态申请和动态控制消费速率剖析

    本期内容 : Spark Streaming资源动态分配 Spark Streaming动态控制消费速率 为什么需要动态处理 : Spark 属于粗粒度资源分配,也就是在默认情况下是先分配好资源然后再 ...

  2. spark streaming从指定offset处消费Kafka数据

    spark streaming从指定offset处消费Kafka数据 -- : 770人阅读 评论() 收藏 举报 分类: spark() 原文地址:http://blog.csdn.net/high ...

  3. spark streaming - kafka updateStateByKey 统计用户消费金额

    场景 餐厅老板想要统计每个用户来他的店里总共消费了多少金额,我们可以使用updateStateByKey来实现 从kafka接收用户消费json数据,统计每分钟用户的消费情况,并且统计所有时间所有用户 ...

  4. spark Streaming与kafka的集成消费

    Spark 2.3.3    Kafka   2.11-1.0.2        Java  jdk1.8.0_191           Hbase 1.2.11 from pyspark impo ...

  5. kafka broker Leader -1引起spark Streaming不能消费的故障解决方法

    一.问题描述:Kafka生产集群中有一台机器cdh-003由于物理故障原因挂掉了,并且系统起不来了,使得线上的spark Streaming实时任务不能正常消费,重启实时任务都不行.查看kafka t ...

  6. Spark Streaming之四:Spark Streaming 与 Kafka 集成分析

    前言 Spark Streaming 诞生于2013年,成为Spark平台上流式处理的解决方案,同时也给大家提供除Storm 以外的另一个选择.这篇内容主要介绍Spark Streaming 数据接收 ...

  7. 4. Spark Streaming解析

    4.1 初始化StreamingContext import org.apache.spark._ import org.apache.spark.streaming._ val conf = new ...

  8. spark streaming 对接kafka记录

    spark streaming 对接kafka 有两种方式: 参考: http://group.jobbole.com/15559/ http://blog.csdn.net/kwu_ganymede ...

  9. spark Streaming的Receiver和Direct的优化对比

    Direct 1.简化并行读取:如果要读取多个partition,不需要创建多个输入DStream然后对它们进行union操作.Spark会创建跟Kafka partition一样多的RDD part ...

随机推荐

  1. ubuntu 软件包(package)更换源(source)为阿里云镜像 update&upgrade

    在ubuntu下用apt-get install安装软件时,发现package list中没有所需的软件, 估计可能是package list太旧了,于是需要apt-get update & ...

  2. Java学习笔记(一)——关于java中的String类

    [前面的话] 毕业将近6个月了,试用期也快要过去了,期待接下来的日子.在金融类性质的机构,最痛苦的是也许就是大部分系统外包,所以比较少写代码,在这六个月中只写了1个月左右的代码,然后每天都在做一些比较 ...

  3. 【JBPM4】创建流程实例

    示例代码: ProcessEngine processEngine = Configuration.getProcessEngine(); ExecutionService executionServ ...

  4. 走进 Cake for .NET

    一.什么是 Cake Cake(C# Make) 是一个使用 C#  DSL 面向 Task 的跨平台构建自动化系统,像编译代码,复制文件和文件夹,运行单元测试,压缩文件和构建 NuGet 包. 更多 ...

  5. nutch 抓取需要登录的网页

    题记:一步一坑,且行且珍惜 最近接到任务,要利用nutch去抓取公司内部系统的文章,可是需要登录才能抓到.对于一个做.net,不熟悉java,不知道hadoop,很少接触linux的我,这个过程真是艰 ...

  6. [thinkphp] 隐藏后台地址

    转自 http://document.thinkphp.cn/manual_3_2.html#module_deploy 如果不希望用户直接访问某个模块,可以设置模块映射(对后台的保护会比较实用). ...

  7. Java浮点类型的格式化

    概述 基于Java,介绍将浮点类型小数进行格式化的方案. 正文 在Java中,用于格式化小数的类是java.text.DecimalFormat,比如你可以这样使用: double data = 33 ...

  8. Maven实用总结

    使用Maven还是推荐IDEA,以前用eclipse总是喜欢出现乱七八糟的问题,具体错误和解决方案也记不清楚了. 下面总结下IDEA中遇到的问题和解决方法: 与IDEA搭配的相关问题 如何根据模板快速 ...

  9. 面向对象编程课程(OOP)第一单元总结

    漫长旅程中还算不错的开头 在本学期开始之前,我按照助教们所给的寒假作业指导书自学了Java语言的相关知识,了解了Java语言的基本语法,输出一句“Hello World!”,掌握了基本的一些输入输出方 ...

  10. linux——(2)文件权限与目录配置

    概念一:用户与用户组 对linux下的每一个文件或者目录来说,访问者都有三种身份:所有者,用户组,其他人.这三种人对于同一个文件的权限是可以分开设定的. 概念二:linux文件权限 文件和目录都有3种 ...