Python数据结构与算法(几种排序)
数据结构与算法(Python)
冒泡排序
冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
冒泡排序算法的运作如下:
- 比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
- 针对所有的元素重复以上的步骤,除了最后一个。
- 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
冒泡排序的分析
交换过程图示(第一次):
那么我们需要进行n-1次冒泡过程,每次对应的比较次数如下图所示:
def bubble_sort(alist): for j in range(len(alist)-1,0,-1): # j表示每次遍历需要比较的次数,是逐渐减小的 for i in range(j): if alist[i] > alist[i+1]: alist[i], alist[i+1] = alist[i+1], alist[i] li = [54,26,93,17,77,31,44,55,20] bubble_sort(li) print(li)
时间复杂度
- 最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)
- 最坏时间复杂度:O(n2)
- 稳定性:稳定
冒泡排序的演示
效果:
选择排序
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。
选择排序分析
排序过程:
红色表示当前最小值,黄色表示已排序序列,蓝色表示当前位置。
def selection_sort(alist): n = len(alist) # 需要进行n-1次选择操作 for i in range(n-1): # 记录最小位置 min_index = i # 从i+1位置到末尾选择出最小数据 for j in range(i+1, n): if alist[j] < alist[min_index]: min_index = j # 如果选择出的数据不在正确位置,进行交换 if min_index != i: alist[i], alist[min_index] = alist[min_index], alist[i] alist = [54,226,93,17,77,31,44,55,20] selection_sort(alist) print(alist)
时间复杂度
- 最优时间复杂度:O(n2)
- 最坏时间复杂度:O(n2)
- 稳定性:不稳定(考虑升序每次选择最大的情况)
选择排序演示
插入排序
插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
插入排序分析
def insert_sort(alist): # 从第二个位置,即下标为1的元素开始向前插入 for i in range(1, len(alist)): # 从第i个元素开始向前比较,如果小于前一个元素,交换位置 for j in range(i, 0, -1): if alist[j] < alist[j-1]: alist[j], alist[j-1] = alist[j-1], alist[j] alist = [54,26,93,17,77,31,44,55,20] insert_sort(alist) print(alist)
时间复杂度
- 最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
- 最坏时间复杂度:O(n2)
- 稳定性:稳定
插入排序演示
快速排序
快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
步骤为:
- 从数列中挑出一个元素,称为"基准"(pivot),
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
快速排序的分析
def quick_sort(alist, start, end): """快速排序""" # 递归的退出条件 if start >= end: return # 设定起始元素为要寻找位置的基准元素 mid = alist[start] # low为序列左边的由左向右移动的游标 low = start # high为序列右边的由右向左移动的游标 high = end while low < high: # 如果low与high未重合,high指向的元素不比基准元素小,则high向左移动 while low < high and alist[high] >= mid: high -= 1 # 将high指向的元素放到low的位置上 alist[low] = alist[high] # 如果low与high未重合,low指向的元素比基准元素小,则low向右移动 while low < high and alist[low] < mid: low += 1 # 将low指向的元素放到high的位置上 alist[high] = alist[low] # 退出循环后,low与high重合,此时所指位置为基准元素的正确位置 # 将基准元素放到该位置 alist[low] = mid # 对基准元素左边的子序列进行快速排序 quick_sort(alist, start, low-1) # 对基准元素右边的子序列进行快速排序 quick_sort(alist, low+1, end) alist = [54,26,93,17,77,31,44,55,20] quick_sort(alist,0,len(alist)-1) print(alist)
时间复杂度
- 最优时间复杂度:O(nlogn)
- 最坏时间复杂度:O(n2)
- 稳定性:不稳定
从一开始快速排序平均需要花费O(n log n)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。
在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为一的数列前,我们只要作log n次嵌套的调用。这个意思就是调用树的深度是O(log n)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(n log n)时间。
快速排序演示
希尔排序
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
希尔排序过程
希尔排序的基本思想是:将数组列在一个表中并对列分别进行插入排序,重复这过程,不过每次用更长的列(步长更长了,列数更少了)来进行。最后整个表就只有一列了。将数组转换至表是为了更好地理解这算法,算法本身还是使用数组进行排序。
例如,假设有这样一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步长为5开始进行排序,我们可以通过将这列表放在有5列的表中来更好地描述算法,这样他们就应该看起来是这样(竖着的元素是步长组成):
13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10
然后我们对每列进行排序:
10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45
将上述四行数字,依序接在一起时我们得到:[ 10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45 ]。这时10已经移至正确位置了,然后再以3为步长进行排序:
10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45
排序之后变为:
10 14 13 25 23 33 27 25 59 39 65 73 45 94 82 94
最后以1步长进行排序(此时就是简单的插入排序了)
希尔排序的分析
def shell_sort(alist): n = len(alist) # 初始步长 gap = n / 2 while gap > 0: # 按步长进行插入排序 for i in range(gap, n): j = i # 插入排序 while j>=gap and alist[j-gap] > alist[j]: alist[j-gap], alist[j] = alist[j], alist[j-gap] j -= gap # 得到新的步长 gap = gap / 2 alist = [54,26,93,17,77,31,44,55,20] shell_sort(alist) print(alist)
时间复杂度
- 最优时间复杂度:根据步长序列的不同而不同
- 最坏时间复杂度:O(n2)
- 稳定想:不稳定
希尔排序演示
归并排序
归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。
将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。
归并排序的分析
def merge_sort(alist): if len(alist) <= 1: return alist # 二分分解 num = len(alist)/2 left = merge_sort(alist[:num]) right = merge_sort(alist[num:]) # 合并 return merge(left,right) def merge(left, right): '''合并操作,将两个有序数组left[]和right[]合并成一个大的有序数组''' #left与right的下标指针 l, r = 0, 0 result = [] while l<len(left) and r<len(right): if left[l] < right[r]: result.append(left[l]) l += 1 else: result.append(right[r]) r += 1 result += left[l:] result += right[r:] return result alist = [54,26,93,17,77,31,44,55,20] sorted_alist = mergeSort(alist) print(sorted_alist)
时间复杂度
- 最优时间复杂度:O(nlogn)
- 最坏时间复杂度:O(nlogn)
- 稳定性:稳定
常见排序算法效率比较
搜索
搜索是在一个项目集合中找到一个特定项目的算法过程。搜索通常的答案是真的或假的,因为该项目是否存在。 搜索的几种常见方法:顺序查找、二分法查找、二叉树查找、哈希查找
二分法查找
二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
二分法查找实现
(非递归实现)
def binary_search(alist, item): first = 0 last = len(alist)-1 while first<=last: midpoint = (first + last)/2 if alist[midpoint] == item: return True elif item < alist[midpoint]: last = midpoint-1 else: first = midpoint+1 return False testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,] print(binary_search(testlist, 3)) print(binary_search(testlist, 13)) (递归实现)
def binary_search(alist, item): if len(alist) == 0: return False else: midpoint = len(alist)// if alist[midpoint]==item: return True else: if item<alist[midpoint]: return binary_search(alist[:midpoint],item) else: return binary_search(alist[midpoint+1:],item) testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,] print(binary_search(testlist, 3)) print(binary_search(testlist, 13))
时间复杂度
- 最优时间复杂度:O(1)
- 最坏时间复杂度:O(logn)
Python数据结构与算法(几种排序)的更多相关文章
- python数据结构与算法篇:排序
1.冒泡排序(英语:Bubble Sort) 它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成. ...
- Python数据结构与算法_删除排序数组中的重复项(06)
给定一个排序数组,你需要在 原地 删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在 原地 修改输入数组 并在使用 O(1) 额外空间的条件下完成. ...
- Python数据结构与算法--算法分析
在计算机科学中,算法分析(Analysis of algorithm)是分析执行一个给定算法需要消耗的计算资源数量(例如计算时间,存储器使用等)的过程.算法的效率或复杂度在理论上表示为一个函数.其定义 ...
- python数据结构与算法
最近忙着准备各种笔试的东西,主要看什么数据结构啊,算法啦,balahbalah啊,以前一直就没看过这些,就挑了本简单的<啊哈算法>入门,不过里面的数据结构和算法都是用C语言写的,而自己对p ...
- Python数据结构与算法--List和Dictionaries
Lists 当实现 list 的数据结构的时候Python 的设计者有很多的选择. 每一个选择都有可能影响着 list 操作执行的快慢. 当然他们也试图优化一些不常见的操作. 但是当权衡的时候,它们还 ...
- Java数据结构和算法(五)--希尔排序和快速排序
在前面复习了三个简单排序Java数据结构和算法(三)--三大排序--冒泡.选择.插入排序,属于算法的基础,但是效率是偏低的,所以现在 学习高级排序 插入排序存在的问题: 插入排序在逻辑把数据分为两部分 ...
- Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例
本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个 ...
- Python数据结构与算法之图的广度优先与深度优先搜索算法示例
本文实例讲述了Python数据结构与算法之图的广度优先与深度优先搜索算法.分享给大家供大家参考,具体如下: 根据维基百科的伪代码实现: 广度优先BFS: 使用队列,集合 标记初始结点已被发现,放入队列 ...
- ZH奶酪:【数据结构与算法】基础排序算法总结与Python实现
1.冒泡排序(BubbleSort) 介绍:重复的遍历数列,一次比较两个元素,如果他们顺序错误就进行交换. 2016年1月22日总结: 冒泡排序就是比较相邻的两个元素,保证每次遍历最后的元素最大. 排 ...
随机推荐
- hdu 2955(概率转化,01背包)
Hot~~招聘——巴卡斯(杭州),壹晨仟阳(杭州),英雄互娱(杭州) (包括2016级新生)除了校赛,还有什么途径可以申请加入ACM校队? Robberies Time Limit: 2000/100 ...
- jquery实现页面加载时删除特定class 的div内前三个字符
jQuery(document).ready(function(){ jQuery("div.groupheader").each(function(){ $(thi ...
- 解决Gradle报错找不到org.gradle.api.internal.project.ProjectInternal.getPluginManager()方法问题
因为本地的AndroidStudio很久没用了,所以想要研究下github上的某个代码的时候,还得重新配下环境 打开了几个项目,都是提示如下错误 Error:Unable to find method ...
- hdu多校4
Problem L. Graph Theory Homework 思路:很容易想到一步从 1 走到 n 最优. #include<bits/stdc++.h> #define LL lon ...
- 04、Unity_声音管理器
1.分享一个Unity中用于管理声音的声音管理器,适合于中小型项目,大项目就算了. 2.借鉴了很多的源码,最后修改完成,吸取百家之长,改为自己所用,哈哈. 3.源码奉上: /* * * 开发时间:20 ...
- xUtils 中的 BitmapUtils
韩梦飞沙 韩亚飞 313134555@qq.com yue31313 han_meng_fei_sha xUtils框架,包括BitmapUtils.DbUtils.ViewUtils和Htt ...
- JZYZOJ 1382 光棍组织 状压dp
http://172.20.6.3/Problem_Show.asp?id=1382 水得过分了,本来以为要用lzx学长的写法写,抱着试试看的想法写了个特暴力的dp+dfs,过了,真是... ...
- [Arc074E] RGB Sequence
[Arc074E] RGB Sequence Description 今天也在愉快地玩Minecraft!现在MM有一块1?N的空地,每个格子按照顺序标记为1到N.MM想要在这块空地上铺上红石块.绿宝 ...
- BZOJ 2157 旅游(动态树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2157 [题目大意] 支持修改边,链上查询最大值最小值总和,以及链上求相反数 [题解] ...
- BZOJ 1827 [Usaco2010 Mar]gather 奶牛大集会(树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1827 [题目大意] 给出一棵有点权和边权的树, 请确定一个点,使得每个点到这个点的距离 ...