开一个单调队列,下标递增,值递减。

然后在上面二分最大数。

如果加上并查集可以做到接近线性。

还有一种是插入一个数然后,从后向前更新ST表。

#include<cstdio>
#include<iostream>
#define R register int
using namespace std;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} const int N=;
int n,M,cnt,top,t;
int a[N],q[N];
signed main() {
n=g(),M=g(); for(R i=,x;i<=n;++i) { register char s[];
scanf("%s",s),x=g(); if(s[]=='A') {
a[++cnt]=(x+t)%M;
while(top&&a[q[top]]<a[cnt]) --top;
q[++top]=cnt;
} else if(s[]=='Q') printf("%d\n",t=a[*lower_bound(q+,q+top+,cnt-x+)]);
}
}

ST表:

#include<cstdio>
#include<iostream>
#include<cmath>
#define ll long long
#define R register ll
using namespace std;
namespace jack {
#define db double
int n,m; ll t,d,ans,a[],f[][]; bool flg;
inline int max(int a,int b) {return a>b?a:b;}
inline void change(int u) {f[u][]=a[u]; for(R i=;u-(<<i)>=;i++) f[u][i]=max(f[u][i-],f[u-(<<(i-))][i-]);}//反向ST表
inline ll find(int a,int b) {db t=log2(b-a+); R k=t; return max(f[b][k],f[a+(<<k)-][k]);}
inline ll g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=(ret<<)+(ret<<)+(ch^); while(isdigit(ch=getchar())); return fix*ret;
}
inline void main() {
m=g(),d=g();
for(R i=;i<=m;i++) {
register char ch;
while(!isalpha(ch=getchar()));
if(ch=='A') {R x=g();a[++n]=(x+t)%d,change(n);}
else {
R l=g(); if(l==) {printf("%lld\n",a[n]),t=a[n];continue;}
ans=find(n-l+,n);
printf("%lld\n",ans); t=ans;
}
}
}
}
signed main() {jack::main();}

2019.07.03

Luogu P1198 [JSOI2008]最大数 单调队列/ST表的更多相关文章

  1. P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表

    P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表 题目背景 \(JYY\) 和 \(CX\) 的结婚纪念日即将到来,\(JYY\) 来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店 ...

  2. POJ1821 单调队列//ST表 优化dp

    http://poj.org/problem?id=1821 当我们在考虑内层循环j以及决策k的时候,我们可以把外层变量i看作定值,以此来优化dp状态转移方程. 题意 有n个工人准备铺m个连续的墙,每 ...

  3. HDU 4123 Bob's Race:树的直径 + 单调队列 + st表

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4123 题意: 给你一棵树,n个节点,每条边有长度. 然后有m个询问,每个询问给定一个q值. 设dis[ ...

  4. Codevs 4373 窗口(线段树 单调队列 st表)

    4373 窗口 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 黄金 Gold 题目描述 Description 给你一个长度为N的数组,一个长为K的滑动的窗体从最左移至最右端,你只 ...

  5. 洛谷 P1198 [JSOI2008]最大数——单调栈/线段树

    先上一波题目 https://www.luogu.org/problem/P1198 题目要求维护后缀最大值 以及在数列的最后面添加一个数 这道题呢我们有两种做法 1.单调栈 因为只需要维护后缀最大值 ...

  6. Luogu P1198 [JSOI2008]最大数

    我会用高级(???)的单调栈来打这道题吗? 线段树即可水过. 假设这个数列刚开始所有数都是0,然后我们每次只要进行一个点的修改和区间求和即可. 这不就是 线段树大法. 只要用一个len记录一下当前数列 ...

  7. P1198 [JSOI2008]最大数(单调栈)

    P1198 [JSOI2008]最大数 题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. 限制: ...

  8. P1198 [JSOI2008]最大数(线段树)

    P1198 [JSOI2008]最大数(线段树) 题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值 ...

  9. 「线段树」「单点修改」洛谷P1198 [JSOI2008]最大数

    「线段树」「单点修改」洛谷P1198 [JSOI2008]最大数 题面描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数, ...

随机推荐

  1. 串的模式匹配,KMP算法

    串的模式匹配 现考虑一个常用操作,在字符串s(我们称为主串)中的第pos开始处往后查找,看在主串s中有没有和子串p相匹配的的,如果有,则返回字串p第一次出现的位置. 暴力求解 int Index(ch ...

  2. HDU - 2196(树形DP)

    题目: A school bought the first computer some time ago(so this computer's id is 1). During the recent ...

  3. redis键空间通知(keyspace notification)

    一.需求 在redis中,设置好key和生存时间之后,希望key过期被删除时能够及时的发送一个通知告诉我key,以便我做后续的一些操作. 二.环境 系统:windows10 php:7.1 redis ...

  4. 适合新手的160个creakme(三)

    先跑一下,这个程序应该是有定时器,多久之后自动开启,测试一下输入,序列号以字母方式输入会出现类型不匹配,之后程序自动退出 但是如果以数字方式输入序列号,则会出现,Try Again,所以这里序列号应该 ...

  5. MongoDB环境搭建

    MongoDB系列第一课:MongDB简介 MongoDB系列第二课:MongDB环境搭建 MongoDB系列第三课:MongDB用户管理 MongoDB系列第四课:MongoDB数据库.集合.文档的 ...

  6. LibSVM格式简介

    对于训练或预测,XGBoost采用如下格式的实例文件: train.txt 1 101:1.2 102:0.03 0 1:2.1 10001:300 10002:400 0 0:1.3 1:0.3 1 ...

  7. 2017多校赛 Function

    Function Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  8. AutoFac实现程序集级别的依赖注入

    1.介绍      所谓程序集级别的依赖注入是指接口和实现的依赖不使用配置文件或硬代码实现(builder.RegisterType<UserInfoService>().As<IU ...

  9. C# enum枚举知识总结

    C#中除了简单的变量类型外,还提供了三种较为复杂的变量类型,包括枚举.结构和数组.本文主要讲述枚举相关的知识. 枚举类型(也称为枚举),提供了一种有效的方式,来定义可能分配给变量的一组已命名的整数常量 ...

  10. SpringBoot项目的限流

    开发访问量比较大的系统是,爬虫的目的就是解决访问量大的问题:缓存穿透是为了保护后端数据库查询服务:计数服务解决了接近真实访问量以及数据库服务的压力. 架构图 限流 就拿十万博客来说,如果存在热点文章, ...