题意:有多项式 $F(x),G(x)$,最高次项分别为 $n,m$。$F(x)$ 最高次项系数为 $1$. $m<n$

给定 $n$ 个不同的点值,满足 $F(x[i])=G(x[i])$

给定多项式 $G(x)$,求 $F(k)$,$k$ 是给定的.

我们知道,$i+1$ 个不同的坐标能确定一个 $i$ 次多项式,即只要有 $i+1$ 个不同的坐标是确定的,那么这个多项式也就确定了.

题中给定了 $n$ 个时刻的横坐标,即 $F(x)=G(x)$,那么有 $F(x)-G(x)=0$.

令 $n$ 次多项式 $M(x)=F(x)-G(x)$

而 $M$ 一定可以被表示成 $0$ 点式,即 $(x-a)(x-b)(x-c)......(x-n)$ 即一共有 $n$ 项.

根据上面的性质:$n+1$ 个点确定唯一的一个多项式,而上面的 $0$ 点式只需 $n$ 个点,所以 $M(x)$ 可以被确定.

而 $G(x)+M(x)=F(x)$

所以在这个式子中,$M(x)$ 被 0 点式确定,而 $G(x)$ 是给定的,所以直接将 $k$ 带入求值即可.

#include <bits/stdc++.h>
#define ll long long
#define mod 998244353
#define N 1000006
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
namespace IO
{
char *p1, *p2, buf[100000];
#define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ )
int rd() { int x = 0;char c = nc();while (c < 48) {c = nc();}while (c > 47) {x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();}return x;}
};
ll qpow(ll base,ll k)
{
ll tmp=1;
for(;k;k>>=1,base=base*base%mod) if(k&1) tmp=tmp*base%mod;
return tmp;
}
int a[N];
int main()
{
using namespace IO;
// setIO("input");
int n=rd(),m=rd(),k=rd(),i,j,ans=1;
for(i=1;i<=n;++i)
{
int x=rd();
ans=(ll)ans*(k-x)%mod;
}
int mdl=1;
for(i=0;i<=m;++i)
{
int x=rd();
(ans+=(ll)mdl*x%mod)%=mod;
mdl=(ll)mdl*k%mod;
}
printf("%d\n",ans);
return 0;
}

  

nowcoder 181045 / 克洛涅的多项式 构造+思维的更多相关文章

  1. 洛谷P1067 多项式输出 NOIP 2009 普及组 第一题

    洛谷P1067 多项式输出 NOIP 2009 普及组 第一题 题目描述 一元n次多项式可用如下的表达式表示: 输入输出格式 输入格式 输入共有 2 行 第一行 1 个整数,n,表示一元多项式的次数. ...

  2. 洛谷AT2046 Namori(思维,基环树,树形DP)

    洛谷题目传送门 神仙思维题还是要写点东西才好. 树 每次操作把相邻且同色的点反色,直接这样思考会发现状态有很强的后效性,没办法考虑转移. 因为树是二分图,所以我们转化模型:在树的奇数层的所有点上都有一 ...

  3. 洛谷——P1067 多项式输出

    P1067 多项式输出 题目描述 一元 n 次多项式可用如下的表达式表示: 其中,aixi称为 i 次项,ai 称为 i 次项的系数.给出一个一元多项式各项的次数和系数,请按照如下规定的格式要求输出该 ...

  4. 洛谷 - P2281 - 多项式的加法和乘法 - 大模拟

    题目链接:https://www.luogu.org/problemnew/show/P2281 题目的意思很简单,输入两个系数.指数都是整数,变量都是大写字母的多项式,求他们的加法结果和乘法结果. ...

  5. 洛谷 P1067 多项式输出

    P1067 多项式输出 模拟,很坑的那种 var i,n:longint; a:array[1..105] of integer; begin readln(n); for i:=1 to n+1 d ...

  6. 洛谷P1067 多项式输出(模拟)

    题目描述 一元 n 次多项式可用如下的表达式表示: 其中,aixi称为 i 次项,ai 称为 i 次项的系数.给出一个一元多项式各项的次数和系数,请按照如下规定的格式要求输出该多项式: 1. 多项式中 ...

  7. [uoj#34] [洛谷P3803] 多项式乘法(FFT)

    新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_ ...

  8. 洛谷 P3803 多项式乘法

    题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1 ...

  9. 洛谷P1067 多项式输出

    题目链接:https://www.luogu.org/problemnew/show/P1067 这是一个纯模拟的小怪但是需要注意一些小细节: 1.首项为正没有+号. 2.所有项系数如果是一的话就省略 ...

随机推荐

  1. 玫瑰花小制作分享-JavaScript(七夕专属浪漫)

    分享一个玫瑰花的制作小方法,用小小的代码给自己的她送上一个不一样的玫瑰花. 玫瑰花代码由JavaScript实现,JavaScript 作为一种脚本语言, 被发明用于在 HTML 网页上使用,可以给H ...

  2. 手写PE结构解析工具

    PE格式是 Windows下最常用的可执行文件格式,理解PE文件格式不仅可以了解操作系统的加载流程,还可以更好的理解操作系统对进程和内存相关的管理知识,而有些技术必须建立在了解PE文件格式的基础上,如 ...

  3. Z算法板子

    给定一个串$s$, $Z$算法可以$O(n)$时间求出一个$z$数组 $z_i$表示$s[i...n]$与$s$的前缀匹配的最长长度, 下标从$0$开始 void init(char *s, int ...

  4. Spring Cloud Alibaba学习笔记(4) - Feign配置与使用

    什么是Feign Feign是一个声明式Web Service客户端. 使用Feign能让编写Web Service客户端更加简单, 它的使用方法是定义一个接口,然后在上面添加注解,同时也支持JAX- ...

  5. TCP(上)

    tcp头格式: TCP状态位: SYN表示建立连接, FIN表示关闭连接, ACK表示响应, PSH表示有 DATA数据传输, RST表示连接重置. TCP窗口: TCP 要做流量控制,通信双方各声明 ...

  6. 正确使用SQLCipher来加密Android数据库

    Android本身自带有不加密的数据库SQLite,如果要保存密码之类的敏感数据在本地的话方法一是使用字段加密解密算法,方法二是整个数据库都加密掉.如果只是加密解密某个字段(如password)就推荐 ...

  7. 起始路由改成分区(Areas)的RouteConfig.cs配置方法

    public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/ ...

  8. nginx热加载、热升级、回滚

    修改完配置文件后使用 nginx -s reload 命令进行热加载 编译好新的 nginx 二进制文件后,运行nginx 开启nginx服务,然后使用 kill -USR2 新的nginx_mast ...

  9. Cookie实现记住密码的功能

    一.什么是Cookie cookie是一种WEB服务器通过浏览器在访问者的硬盘上存储信息的手段.Cookie的目的就是为用户带来方便,为网站带来增值.虽然有着许多误传,事实上Cookie并不会造成严重 ...

  10. Dumpsys Alarm查看应用程序唤醒命令

    Dumpsys alarm查看应用程序唤醒命令: 在安卓adb root进如命令行后(没有root或者root群组的权限执行不了该命令), 1. <span style="font-s ...