1116 K进制下的大数 

基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题

 收藏

 关注

有一个字符串S,记录了一个大数,但不知这个大数是多少进制的,只知道这个数在K进制下是K - 1的倍数。现在由你来求出这个最小的进制K。

例如:给出的数是A1A,有A则最少也是11进制,然后发现A1A在22进制下等于4872,4872 mod 21 = 0,并且22是最小的,因此输出k = 22(大数的表示中A对应10,Z对应35)。

Input

输入大数对应的字符串S。S的长度小于10^5。

Output

输出对应的进制K,如果在2 - 36范围内没有找到对应的解,则输出No Solution。

Input示例

A1A

Output示例

22

正如一个数能被9整除的充要条件是各位置上的数字之和被9整除一样,K进制下的数能被K-1整除的充要条件是各个位置上的数字之和能被K-1整除。。。


#include<bits/stdc++.h>
#include<stdio.h>
#include<iostream>
#include<cmath>
#include<math.h>
#include<queue>
#include<set>
#include<map>
#include<iomanip>
#include<algorithm>
#include<stack>
#define inf 0x3f3f3f3f
typedef long long ll;
namespace IO {
const int MT = 10 * 1024 * 1024; /// 10MB 请注意输入数据的大小!!!
char IO_BUF[MT];
int IO_PTR, IO_SZ;
/// 要记得把这一行添加到main函数第一行!!!
void begin() {
IO_PTR = 0;
IO_SZ = fread (IO_BUF, 1, MT, stdin);
}
template<typename T>
inline bool scan_d (T & t) {
while (IO_PTR < IO_SZ && IO_BUF[IO_PTR] != '-' && (IO_BUF[IO_PTR] < '0' || IO_BUF[IO_PTR] > '9'))
IO_PTR ++;
if (IO_PTR >= IO_SZ) return false;
bool sgn = false;
if (IO_BUF[IO_PTR] == '-') sgn = true, IO_PTR ++;
for (t = 0; IO_PTR < IO_SZ && '0' <= IO_BUF[IO_PTR] && IO_BUF[IO_PTR] <= '9'; IO_PTR ++)
t = t * 10 + IO_BUF[IO_PTR] - '0';
if (sgn) t = -t;
return true;
}
inline bool scan_s (char s[]) {
while (IO_PTR < IO_SZ && (IO_BUF[IO_PTR] == ' ' || IO_BUF[IO_PTR] == '\n') ) IO_PTR ++;
if (IO_PTR >= IO_SZ) return false;
int len = 0;
while (IO_PTR < IO_SZ && IO_BUF[IO_PTR] != ' ' && IO_BUF[IO_PTR] != '\n')
s[len ++] = IO_BUF[IO_PTR], IO_PTR ++;
s[len] = '\0';
return true;
}
template<typename T>
void print(T x) {
static char s[33], *s1; s1 = s;
if (!x) *s1++ = '0';
if (x < 0) putchar('-'), x = -x;
while(x) *s1++ = (x % 10 + '0'), x /= 10;
while(s1-- != s) putchar(*s1);
}
template<typename T>
void println(T x) {
print(x); putchar('\n');
}
};
using namespace IO;
using namespace std;
char s[1000050];
int n,w=0;
int digit(char c){
if('0'<=c&&c<='9')return c-'0';
return c-'A'+10;
}
int main(){
begin();
scan_s(s);
int len=strlen(s);
for(int i=0;i<len;++i){
n+=digit(s[i]);
w=max(w,digit(s[i]));
}
for(int i=w;i<36;++i)if(n%i==0){
printf("%d\n",i+1);
return 0;
}
printf("No Solution\n");
}

51 Nod 1116 K进制下的大数的更多相关文章

  1. 51nod 1116 K进制下的大数

    你万万想不到,Long Long 就能存下的数据 #include <iostream> #include <cstdio> #include <cstdlib> ...

  2. 51nod 1116 K进制下的大数 (暴力枚举)

    题目链接 题意:中文题. 题解:暴力枚举. #include <iostream> #include <cstring> using namespace std; ; ; ch ...

  3. 51Nod 1116 K进制下的大数(暴力枚举)

    #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> us ...

  4. [51nod1116]K进制下的大数

    解题关键:$A\% (k - 1) = (A[0] + A[1]*k + A[2]*{k^2} + ...A[n]*{k^n})\% (k - 1) = (A[0] + A[1] + ...A[n]) ...

  5. A - K进制下的大数

    https://vjudge.net/contest/218366#problem/A 中间溢出,注意求模. #include<iostream> #include<cstdio&g ...

  6. n!在k进制下的后缀0

    问n! 转化成k进制后的位数和尾数的0的个数.[UVA 10061 How many zeros and how many digits?] Given a decimal integer numbe ...

  7. bzoj 3000 Big Number 估算n!在k进制下的位数 斯特林公式

    题目大意 求n!在k进制下的位数 2≤N≤2^31, 2≤K≤200 分析 作为数学没学好的傻嗨,我们先回顾一下log函数 \(\log_a(b)=\frac 1 {log_b(a)}\) \(\lo ...

  8. 求x!在k进制下后缀零的个数(洛谷月赛T1)

    求x!在k进制下后缀和的个数 20分:     求十进制下的x!后缀和的个数 40分: 高精求阶乘,直接模拟过程 (我不管反正我不打,本蒟蒻最讨厌高精了) 60分     利用一个定理(网上有求x!在 ...

  9. 陕西师范大学第七届程序设计竞赛网络同步赛 F WWX的礼物【数学/k进制下x^n的位数/log】

    链接:https://www.nowcoder.com/acm/contest/121/F来源:牛客网 题目描述 WWX的女朋友送给了他一个礼物,可是礼物却被一把K进制密码锁锁住了.在礼物盒上还有一张 ...

随机推荐

  1. T100——作业action执行其他P作业,后台背景执行完后才能继续操作改作业

    范例:如axmt500订单,查询开单占用量: 客制作业cxmp500,通过参数-订单号,查询该订单下的料件,目前有库存量.开单占用量.库存可用量,查询后更新到该订单下的单身对应栏位: 现在axmt50 ...

  2. 本地连接Linux工具

    连接Linux命令 finaXshell 工具好用: 链接:https://pan.baidu.com/s/13yyOhi7GzcZNTxXseGO_fA 提取码:n4t6 上次Linux 文件工具: ...

  3. Make It One CodeForces - 1043F (数论,最短路,好题)

    大意: 给定序列$a$, 求最小子集, 使得gcd为1. 对于数$x$, 素因子多少次幂是无关紧要的, 这样就可以用一个二进制数来表示. $x$取$gcd$后的二进制状态最多$2^7$, 可以暴力枚举 ...

  4. CSS 小工具集

    http://www.colorzilla.com/gradient-editor/css渐变生成工具.http://linxz.github.io/tianyizone/css志爷小工具.http: ...

  5. 【原创】大数据基础之Kudu(4)spark读写kudu

    spark2.4.3+kudu1.9 1 批量读 val df = spark.read.format("kudu") .options(Map("kudu.master ...

  6. C#异步编程学习笔记之-async和await

    一.异步方法介绍(async和await):如果使用async修饰符将某种方法指定为异步方法,即启用以下两种功能.1.标记的异步方法可以使用await来指定暂停点.await运算符通知编译器异步方法: ...

  7. (转)Java new一个对象的过程中发生了什么

    Java在new一个对象的时候,会先查看对象所属的类有没有被加载到内存,如果没有的话,就会先通过类的全限定名(包名+类名)来加载.加载并初始化类完成后,再进行对象的创建工作. 我们先假设是第一次使用该 ...

  8. collections:内建模块,提供额外的集合类

    介绍 collections里面包含了很多除了内置类型之外的数据类型,我们使用它们有时可以很方便的完成一系列操作 ChainMap:搜索多个字典 from collections import Cha ...

  9. linux之网络命令

    本文整理了在实践过程中使用的Linux网络工具,这些工具提供的功能非常强大,我们平时使用的只是冰山一角,比如lsof.ip.tcpdump.iptables等. 本文不会深入研究这些命令的强大用法,因 ...

  10. 使用browsercookie来管理浏览器cookies

    处理cookie是很繁琐的一件事情,稍微有一点处理不对的话,就不能访问网站,最好的办法就是能操作浏览器cookie,这样是最真实的,在Python中有一个第三方库: browsercookie就是来解 ...