题目: 链接:https://codeforces.com/problemset/problem/940/F

题意:给你n个数,a[i]有q个操作,操作有两种:操作1.       1 x y 表示询问, mex{ c[ 1 ],c[ x + 1 ],...c[ 1e9 ] } 的值, 其中 c[i] 表示 a[ i ] 在 区间 [ x , y ] 出现的次数, (mex{   }  的意思呢,是从1开始数,第一个不出现在集合 {   }  里的数, 比如  mex{  1, 2,  4  } = = 3     因为此题是从1开始数 )       操作2.      2  p  x  将 a[ p ]  重新赋值 为 x                  对每个操作1 输出答案

思路: 将  a[ i ]  离散化  因为 数据有点大,然后找答案 直接 暴力 找   其他的基本上就是 带修莫队 的 模板了

#include<bits/stdc++.h>
#define LL long long
#define ULL unsigned long long
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define dep(i,j,k) for(int i=k;i>=j;i--)
#define INF 0x3f3f3f3f
#define mem(i,j) memset(i,0,sizeof(i))
#define make(i,j) make_pair(i,j)
using namespace std;
const int N=2e5+;
int a[N],pos[N],num[N],cnt[N],now[N],p,ans[N],l=,r=; /// num就是a[i]在l,r出现的次数,然后cnt就是那个 mex { } 的集合
struct noq {
int l,r,id,t;
}q[N];
struct noc {
int x,old,ne;
}c[N];
map<int,int>vis; ///离散化 a[i] 需要
bool cmp(noq a,noq b) {
if(pos[a.l]==pos[b.l]) {
if(pos[a.r]==pos[b.r]) return a.t<b.t;
return pos[a.r]<pos[b.r];
}
return pos[a.l]<pos[b.l];
}
int get(int x) { /// 得到 离散化后的a[i]
if(vis[x]==) vis[x]=++p;
return vis[x];
}
void add(int x,int d) {
cnt[num[x]]--;
num[x]+=d;
cnt[num[x]]++;
}
void go(int x,int ne) {
if(l<=x && x<=r) {
add(a[x],-); add(ne,);
}
a[x]=ne;
}
int cal() {///找答案
for(int i=;;i++) if(cnt[i]==) return i;
}
int main() {
int n,m; int head=,tail=;
scanf("%d %d",&n,&m); int M=(int)pow(n,0.666666);
rep(i,,n) {
scanf("%d",&a[i]);
now[i]=a[i]=get(a[i]);
pos[i]=(i-)/M;
}
rep(i,,m) {
int ch; int x,y;
scanf("%d %d %d",&ch,&x,&y);
if(ch==) q[++head]=(noq){x,y,head,tail};
else {
y=get(y); ///记得y也要离散化,因为 now[x] 是 离散化后的 a[i]
c[++tail]=(noc){x,now[x],y};
now[x]=y;
}
}
sort(q+,q++head,cmp); int t=;
rep(i,,head) {
while(t<q[i].t) go(c[t+].x,c[t+].ne),++t;
while(t>q[i].t) go(c[t].x,c[t].old),--t;
while(l<q[i].l) add(a[l++],-);
while(l>q[i].l) add(a[--l],);
while(r<q[i].r) add(a[++r],);
while(r>q[i].r) add(a[r--],-);
ans[q[i].id]=cal();
}
rep(i,,head) printf("%d\n",ans[i]);
return ;
}

CF 940F - Machine Learning ( 带 修 )的更多相关文章

  1. F. Machine Learning 带修端点莫队

    F. Machine Learning time limit per test 4 seconds memory limit per test 512 megabytes input standard ...

  2. Codeforces 940F Machine Learning 带修改莫队

    题目链接 题意 给定一个长度为\(n\)的数组\(a\),\(q\)个操作,操作分两种: 对于区间\([l,r]\),询问\(Mex\{c_0,c_1,c_2,⋯,c_{10^9}\}\),其中\(c ...

  3. Codeforces 940F Machine Learning (带修改莫队)

    题目链接  Codeforces Round #466 (Div. 2) Problem F 题意  给定一列数和若干个询问,每一次询问要求集合$\left\{c_{0}, c_{1}, c_{2}, ...

  4. CF940F Machine Learning 带修改莫队

    题意:支持两种操作:$1.$ 查询 $[l,r]$ 每个数字出现次数的 $mex$,$2.$ 单点修改某一位置的值. 这里复习一下带修改莫队. 普通的莫队中,以左端点所在块编号为第一关键字,右端点大小 ...

  5. CF940F Machine Learning(带修莫队)

    首先显然应该把数组离散化,然后发现是个带修莫队裸题,但是求mex比较讨厌,怎么办?其实可以这样求:记录每个数出现的次数,以及出现次数的出现次数.至于求mex,直接暴力扫最小的出现次数的出现次数为0的正 ...

  6. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  7. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  8. 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  9. 机器学习(Machine Learning)&深度学习(Deep Learning)资料汇总 (上)

    转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Ma ...

随机推荐

  1. go实现简单的tcp编程

    服务端的代码 package main import ( "fmt" "net" ) func main () { fmt.Println("star ...

  2. Spring @Transactional注解在什么情况下会失效,为什么?

    出处:  https://www.cnblogs.com/hunrry/p/9183209.html   https://www.cnblogs.com/protected/p/6652188.htm ...

  3. asp.net core-16.EF Core Migration

    左边的是基于visual studio code 右边的是基于visual studio 如果想要在数据库的AspNetUsers表里添加一列 然后可以发现 在Data下的Migrations文件夹下 ...

  4. uboot 代码执行顺序

    ref:http://blog.chinaunix.net/uid-30352139-id-5128405.html uboot: 2014.07 1.1    U-boot相关文件 boards.c ...

  5. 怎样对小数进行向上取整 / 向下取整 / 四舍五入 / 保留n位小数 / 生成随机数

    1. 向上取整使用: Math.ceil() Math.ceil(0.1); Math.ceil(1.9); 2. 向下取整使用: Math.floor() Math.floor(0.1); Math ...

  6. 2 vue学习

    1 vue的核心是数据与视图的双向绑定 2 当viewmodel销毁时,所有的事件处理器都会自动删除,无需自己清理 3 v-model的修饰符解释 .lazy :失去焦点或者按回车键时触发同步 .nu ...

  7. 5.管道 Pipe

    /*管道(Pipe)*/ Java NIO 管道是 /*2 个线程*/ 之间的 /*单向*/数据连接 Pipe 有一个 source 通道 和 一个 sink 通道.数据会被写到 sink 通道,从s ...

  8. Netty——基本使用介绍

    https://blog.csdn.net/haoyuyang/article/details/53243785 1.为什么选择Netty 上一篇文章我们已经了解了Socket通信(IO/NIO/AI ...

  9. SmartEvent with kbmMW #1

    前言 前面的文章,我写了有关SmartBinding框架方面的内容.SmartBinding的目的是将数据容器绑定到一起,通常情况下,数据容器可以是显示数据或与数据交互的控件(Edit,ListVie ...

  10. 【2017-11-26】Linq表连接查询

    class Program { static void Main(string[] args) { //Linq创建的数据库上下文对象db DataClasses2DataContext db = n ...