[Feature] Compare the effect of different scalers
Ref: Compare the effect of different scalers on data with outliers
主要是对该代码的学习研究。
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import minmax_scale
from sklearn.preprocessing import MaxAbsScaler
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import Normalizer
from sklearn.preprocessing import QuantileTransformer
from sklearn.preprocessing import PowerTransformer from sklearn.datasets import fetch_california_housing print(__doc__) dataset = fetch_california_housing()
X_full, y_full = dataset.data, dataset.target # Take only 2 features to make visualization easier
# Feature of 0 has a long tail distribution.
# Feature 5 has a few but very large outliers. X = X_full[:, [0, 5]]
################################################################
distributions = [
('Unscaled data', X),
('Data after standard scaling',
StandardScaler().fit_transform(X)),
('Data after min-max scaling',
MinMaxScaler().fit_transform(X)),
('Data after max-abs scaling',
MaxAbsScaler().fit_transform(X)),
('Data after robust scaling',
RobustScaler(quantile_range=(25, 75)).fit_transform(X)),
('Data after power transformation (Yeo-Johnson)',
PowerTransformer(method='yeo-johnson').fit_transform(X)),
('Data after power transformation (Box-Cox)',
PowerTransformer(method='box-cox').fit_transform(X)),
('Data after quantile transformation (gaussian pdf)',
QuantileTransformer(output_distribution='normal').fit_transform(X)),
('Data after quantile transformation (uniform pdf)',
QuantileTransformer(output_distribution='uniform').fit_transform(X)),
('Data after sample-wise L2 normalizing',
Normalizer().fit_transform(X)),
] # scale the output between 0 and 1 for the colorbar
y = minmax_scale(y_full)
Original data
Each transformation is plotted showing two transformed features, with the left plot showing the entire dataset, and the right zoomed-in to show the dataset without the marginal outliers. A large majority of the samples are compacted to a specific range, [0, 10] for the median income and [0, 6] for the number of households. Note that there are some marginal outliers (some blocks have more than 1200 households). Therefore, a specific pre-processing can be very beneficial depending of the application. In the following, we present some insights and behaviors of those pre-processing methods in the presence of marginal outliers.
make_plot(0)
StandardScaler
StandardScaler
removes the mean and scales the data to unit variance. However, the outliers have an influence when computing the empirical mean and standard deviation which shrink the range of the feature values as shown in the left figure below. Note in particular that because the outliers on each feature have different magnitudes, the spread of the transformed data on each feature is very different: most of the data lie in the [-2, 4] range for the transformed median income feature while the same data is squeezed in the smaller [-0.2, 0.2] range for the transformed number of households.
StandardScaler
therefore cannot guarantee balanced feature scales in the presence of outliers.
- 收敛速度
- 不同属性列的数据可比性
- 不太适用outliers情况
- 不适用稀疏数据
make_plot(1)
MinMaxScaler
MinMaxScaler
rescales the data set such that all feature values are in the range [0, 1] as shown in the right panel below. However, this scaling compress all inliers in the narrow range [0, 0.005] for the transformed number of households.
As StandardScaler
, MinMaxScaler
is very sensitive to the presence of outliers.
- 保留了结构,可用于稀疏数据
make_plot(2)
MaxAbsScaler
MaxAbsScaler
differs from the previous scaler such that the absolute values are mapped in the range [0, 1]. On positive only data, this scaler behaves similarly to MinMaxScaler
and therefore also suffers from the presence of large outliers.
- 保留了结构,可用于稀疏数据
make_plot(3)
RobustScaler
Unlike the previous scalers, the centering and scaling statistics of this scaler are based on percentiles and are therefore not influenced by a few number of very large marginal outliers. Consequently, the resulting range of the transformed feature values is larger than for the previous scalers and, more importantly, are approximately similar: for both features most of the transformed values lie in a [-2, 3] range as seen in the zoomed-in figure. Note that the outliers themselves are still present in the transformed data. If a separate outlier clipping is desirable, a non-linear transformation is required (see below).
- 使outlier点保留了离群特征。
make_plot(4)
PowerTransformer
PowerTransformer
applies a power transformation to each feature to make the data more Gaussian-like. Currently, PowerTransformer
implements the Yeo-Johnson and Box-Cox transforms. The power transform finds the optimal scaling factor to stabilize variance and mimimize skewness through maximum likelihood estimation. By default, PowerTransformer
also applies zero-mean, unit variance normalization to the transformed output. Note that Box-Cox can only be applied to strictly positive data. Income and number of households happen to be strictly positive, but if negative values are present the Yeo-Johnson transformed is to be preferred.
make_plot(5)
make_plot(6)
QuantileTransformer (Gaussian output)
QuantileTransformer
has an additional output_distribution
parameter allowing to match a Gaussian distribution instead of a uniform distribution. Note that this non-parametetric transformer introduces saturation artifacts for extreme values.
make_plot(7)
QuantileTransformer (uniform output)
QuantileTransformer
applies a non-linear transformation such that the probability density function of each feature will be mapped to a uniform distribution. In this case, all the data will be mapped in the range [0, 1], even the outliers which cannot be distinguished anymore from the inliers.
As RobustScaler
, QuantileTransformer
is robust to outliers in the sense that adding or removing outliers in the training set will yield approximately the same transformation on held out data. But contrary to RobustScaler
, QuantileTransformer
will also automatically collapse any outlier by setting them to the a priori defined range boundaries (0 and 1).
make_plot(8)
Normalizer
The Normalizer
rescales the vector for each sample to have unit norm, independently of the distribution of the samples. It can be seen on both figures below where all samples are mapped onto the unit circle. In our example the two selected features have only positive values; therefore the transformed data only lie in the positive quadrant. This would not be the case if some original features had a mix of positive and negative values.
- 经常在文本分类和聚类当中使用
make_plot(9) plt.show()
[Feature] Compare the effect of different scalers的更多相关文章
- [ML] Feature Transformers
方案选择可参考:[Scikit-learn] 4.3 Preprocessing data 代码示范可参考:[ML] Pyspark ML tutorial for beginners 本篇涉及:Fe ...
- sklearn中的数据预处理----good!! 标准化 归一化 在何时使用
RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimiz ...
- 改变BootStrap主题颜色
摘自:http://www.asp.net/visual-studio/overview/2013/creating-web-projects-in-visual-studio#bootstrap Y ...
- aspNet各种模块介绍
For browsers that do not support HTML5, you can use Modernizr. Modernizr is an open-source JavaScrip ...
- Get Started with the Google Fonts API
Get Started with the Google Fonts API This guide explains how to use the Google Fonts API to add fon ...
- A successful Git branching model——经典篇
A successful Git branching model In this post I present the development model that I’ve introduced f ...
- Jackson 工具类使用及配置指南
目录 前言 Jackson使用工具类 Jackson配置属性 Jackson解析JSON数据 Jackson序列化Java对象 前言 Json数据格式这两年发展的很快,其声称相对XML格式有很对好处: ...
- Jackson工具类使用及配置指南、高性能配置(转)
Jackson使用工具类 通常,我们对JSON格式的数据,只会进行解析和封装两种,也就是JSON字符串--->Java对象以及Java对象--->JSON字符串. public class ...
- Create the Project
https://docs.microsoft.com/en-us/aspnet/web-forms/overview/getting-started/getting-started-with-aspn ...
随机推荐
- textbox 输入值提示。。。(类似百度搜索)
public void textBox5_xiala() { DataSet ds = SQl_yuji.ds_cinvname(); this.textBox5.AutoCompleteMode = ...
- Redis主从、哨兵、集群
主从 命名设置:>6380 slaveof 127.0.0.01 6379 slaveof on one----------配置:-- 注意一点: 一定开启rdb,不能使用aof从节点配置:主节 ...
- 05—动态sql
1.创建表 CREATE TABLE tb_employee ( ID INT(11) PRIMARY KEY AUTO_INCREMENT, loginname VARCHAR(18), PASSW ...
- 【线段树 矩阵乘法dp】8.rseq
题目分析 #include<bits/stdc++.h> #define MO 998244353 ; struct Matrix { ][]; void init(int c, int ...
- 洛谷P2664 树上游戏——点分治
原题链接 被点分治虐的心态爆炸了 题解 发现直接统计路径上的颜色数量很难,考虑转化一下统计方式.对于某一种颜色\(c\),它对一个点的贡献为从这个点出发且包含这种颜色的路径条数. 于是我们先点分一下, ...
- [唐胡璐]QTP技巧 - QTP菜单项消失
有时候QTP的菜单栏的下拉菜单为空。 解决方法:在菜单栏点击右键,选择“Customize”,在Customize窗口的ToolBarTab页,点击“Restore All”后即可。
- Mybatis一对一和一对多配置
作者:夕下奕林 问题描述 现在有三张数据表,表名为orders,orderdetail,items,分别表示订单,订单详情,商品. 其中一个订单包含多个订单详情,表示订单中的不同个具体的商品,订单详情 ...
- windows下常用cmd命令
CMD命令:开始->运行->键入cmd或command(在命令行里可以看到系统版本.文件系统版本)1. appwiz.cpl:程序和功能 2. calc:启动计算器 3. certmgr. ...
- API接口防止参数篡改和重放攻击
{近期领导要求我对公司业务的支付类的ocr接口做研究,是否存在支付接口重放攻击,so.....} API重放攻击(Replay Attacks)又称重播攻击.回放攻击.他的原理就是把之前窃听到的数据原 ...
- Python 3 格式化字符串的几种方法!
Python 3 格式化字符串的几种方法! %s和%d,%s是用来给字符串占位置,%d是给数字占位置,简单解释下: a = 'this is %s %s' % ('an','apple') 程序输出的 ...