题目在这里

每次从包装中取出一块巧克力并放在桌子上。如果桌子上有两个相同颜色的巧克力,则将这两个丢掉。
如果包中有C种颜色的巧克力(颜色均匀分布),从包装中取出N个巧克力后,桌子上确实有M个巧克力的概率是多少?
对于每种情况,存在三个非负整数:C(C <= 100),N和M(N,M <= 1000000)。 

题目要求取出n个巧克力后,桌上剩余m个巧克力的概率。那我们就按着题目意思来,dp[i][j]的含义就是这个
首先,判断边界条件,如果取出0个巧克力,那么桌子上剩余0个巧克力的概率是多少???很简单,dp[0][0] = 1;
另外,针对输入的c,n,m进行非法判断,即概率为0.000的直接输出就好了
 
m的个数是小于等于c的,因为如果某种颜色的巧克力数量是大于等于2的,那么一定是两个都被拿走了,也就是最后剩下的每种巧克力要么只有一个要么没有。所以最多所有的颜色都在桌上,都是一个
dp[i][j]表示前i次操作(即取出i个巧克力)后,桌上出现j个巧克力的概率。试想,如果i+j是奇数会是什么情况?
dp[i][j]是等于0的(不可能出现的情况)。为什么不可能出现呢,因为每次取出的球都会现放到桌上比较,如果没有重复的颜色,则桌子上球数+1,如果有重复,将重复的两个球都拿掉,也就是i的次数首先加到m上,此刻的m要么不变,要么-2,不会出现奇数的情况。所以dp[i][j]中i+j为奇数则概率是0
可以手动模拟验算下。
 
那么,状态转移方程怎么来呢??因为么取到的球和桌子上球的颜色不重复,即 dp[i-1][j-1]  * (c-j+1.0)/c; 就是在前面拿出i-1个巧克力后,桌子剩余j-1个巧克力的概率上,乘上这次取出的巧克力与桌子上巧克力颜色不重复的概率,c-j+1.0,表示颜色总数减去桌上的不同颜色的,剩余的也是不同颜色的,再除以c就是对应的取出不同颜色的概率了
要么取出的球和桌上某个球的颜色相同,要一起拿走,方程是这样:dp[i-1][j+1]*(j+1.0)/c ,j+1/c,即取出的球的颜色和桌上的球的某个颜色相同了
dp[i][j]将二者加起来即可
 
另外,在对很大的n进行计算时,可以将其看成一个较小的n,因为很大的n对应的概率和较小的数m的概率只有小数点后好几位才会不同,所以可以转换下
 1 #include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
#define MAX 105
int main()
{
int c = , n = , m = ;
double dp[MAX * ][MAX];
while (scanf("%d", &c) != EOF)
{
if (c == )
{
break;
}
scanf("%d %d", &n, &m);
if (m > c || m > n || (m + n) % != )//特判
{
printf("0.000\n");
continue;
}
memset(dp, , sizeof(dp));
if (n > )//将较大的n转换较小的
{
n = + n % ;//奇偶选择
}
dp[][] = ;
for (int i = ; i <= n; ++i)
{
for (int j = ; j <= c; ++j)
{
if ((i + j) % != )
{
continue;
}
dp[i][j] = dp[i - ][j - ] * (c - j + 1.0) / c + dp[i - ][j + ] * (j + 1.0) / c;
}
}
printf("%.3lf\n", dp[n][m]);
}
return ;
}
 

POJ1322Chocolate--概论DP的更多相关文章

  1. uva 11468 Substring

    题意:给你 k 个模板串,然后给你一些字符的出现概率,然后给你一个长度 l ,问你这些字符组成的长度为 l 的字符串不包含任何一个模板串的概率. 思路:AC自动机+概论DP 首先用K个模板构造好AC自 ...

  2. (13)[Xamarin.Android] 不同分辨率下的图片使用概论

    原文 [Xamarin.Android] 不同分辨率下的图片使用概论 设计Android App的时候,其尺寸众多也是一个挑战之一.要针对不同尺寸设计Android App时,就要先来了一下dpi(d ...

  3. 2018.09.15点名器(简单dp)

    描述 Ssoier在紧张的学习中,杜老师每天给他们传授精妙的知识. 杜老师为了活跃气氛,设计了一个点名器,这个点名器包含一个长度为M的数组(下标1开始),每个元素是一个oier的名字,每次点名的时候, ...

  4. HDU 5236 Article (概率DP+贪心)

    题意:要求输入一篇N个字符的文章,对所有非负整数i:每到第i+0.1秒时可以输入一个文章字符,每到第i+0.9秒时有P的概率崩溃(回到开头或者上一个存盘点) 每到第i秒有一次机会可以选择按下X个键存盘 ...

  5. 数位dp真·浅谈 By cellur925

    预警:由于是从$Vergil$学长那里和$Mathison$大神那里学来的,所以清一色记忆化搜索!qwq 巨佬的数位dp讲解(未来的咕咕日报头条): https://www.luogu.org/blo ...

  6. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  7. 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...

  8. AEAI DP V3.7.0 发布,开源综合应用开发平台

    1  升级说明 AEAI DP 3.7版本是AEAI DP一个里程碑版本,基于JDK1.7开发,在本版本中新增支持Rest服务开发机制(默认支持WebService服务开发机制),且支持WS服务.RS ...

  9. AEAI DP V3.6.0 升级说明,开源综合应用开发平台

    AEAI DP综合应用开发平台是一款扩展开发工具,专门用于开发MIS类的Java Web应用,本次发版的AEAI DP_v3.6.0版本为AEAI DP _v3.5.0版本的升级版本,该产品现已开源并 ...

  10. Atitit.研发团队与公司绩效管理的原理概论的attilax总结

    Atitit.研发团队与公司绩效管理的原理概论的attilax总结 1. 四个理念 1 1.1. 绩效管理的三个目的.四个环节.五个关键2 1.2. 绩效目标smart2 2. 考核对象2 3. 绩效 ...

随机推荐

  1. layui的table中日期格式转换

    我使用的layui的2.4.5版本,在util中已经带了格式转换的函数.这里主要记录如何使用. 未使用前在table中显示如下: 前端代码如下: {field:'createDate', title: ...

  2. flutter 中的搜索条实现

    import 'package:flutter/material.dart'; import 'package:flutter_app/SearchBarDemo.dart'; void main() ...

  3. Typescript中的可索引接口 类类型接口

    /* 5.typeScript中的接口 可索引接口 类类型接口 */ /* 接口的作用:在面向对象的编程中,接口是一种规范的定义,它定义了行为和动作的规范,在程序设计里面,接口起到一种限制和规范的作用 ...

  4. python声明类时继承不继承object类的区别

    不加的叫做经典类或旧式类,但是现在python3的类都默认是继承了object的,所以可写可不写 下面举个例子说明: 首先说明下__class__功能与用法: __class__功能和type()函数 ...

  5. Qt tableview加载数据

    Qt tableview加载数据 //把数据加载到tableView void ImportData::loadDataInTableView() { ) { if (pageNum>stude ...

  6. extends 类的继承 / super关键字,调用继承类里面的函数和变量

    Son 继承Father 当其他脚本想调用 Father类里面的变量 or 方法 可以把 Son r=new Son()   等价于 Father r=new Father() 注意: 函数只能单继承 ...

  7. online学习和offline学习

    参考:https://blog.csdn.net/a133521741/article/details/79221015 解释: (1)offline学习:每次训练完一个batch后再更新参数: (2 ...

  8. python中的随机函数random的用法示例

    python中的随机函数random的用法示例 一.random模块简介 Python标准库中的random函数,可以生成随机浮点数.整数.字符串,甚至帮助你随机选择列表序列中的一个元素,打乱一组数据 ...

  9. 安装kubernet(k8s)

    简介: 需要学习的都明白,这里就不赘述了. 本文采用CentOS-7-x86_64-DVD-1810.iso 一:安装操作系统 本来是喜欢用fedora的,但是fedora貌似包维护的不好,就又开始用 ...

  10. Windows Server 2012 安装 .NET 3.5 解决办法

    我遇到的每台Windows Server 2012都会遇到无法通过控制面板进行.net3.5安装的问题,在网上找了很多办法都不适合自己,最后研究出来一个办法就是 1.首先从镜像提取sxs文件放置到一个 ...