Driver drowsy detection dataset
Introduction
Driver drowsy detection dataset consists of both male and female drivers, with various facial characteristics, different ethnicities, and 5 different scenarios.
The videos are taken in real and varying illumination conditions. The scenarios contain BareFace(NoGlasses), Glasses, Sunglasses, Night-BareFace(Night-NoGlasses)
and Night-Glasses. Every video may contain 2 kinds of status: drowsy, non-drowsy. Each video is different situation with different status transition.
驾驶员疲劳检测数据集包含了男性和女性驾驶员,涵盖不同的面部特征、种族、以及5个不同的场景。
这些视频在实际和不同光照的状态下拍摄。场景中包含了BareFace(NoGlasses), Glasses, Sunglasses, Night-BareFace(Night-NoGlasses)和Night-Glasses,
每个视频可能包含了2种状态:drowsy, non-drowsy. 每个视频都是在不同的状态转换下完成的。
--------------------------------------------------------------------------------------------------------
Camera Setting and Video Format
We used the active infrared (IR) illumination and acquire IR videos in the dataset collection.
The videos are in 640x480 pixels and 15/30 frames per second AVI format without audio.
[Notice] The videos in night_noglasses and night_glasses scenarios are 15 frame per second, and the videos in the other scenarios are 30 frame per second.
在这个数据集中我们使用主动红外照明并获取红外视频。
这个视频集有640x480的像素,15/30fps,不带声音的AVI格式。
[注意] 这个视频集在night_noglasses和night_glasses场景下是15fps,在其他场景中是30fps。
--------------------------------------------------------------------------------------------------------
Driver's Behaviors
Yawning : The driver opens his mouth wide due to tiredness.
Nodding : The driver's head falls forward when drowsy or asleep.
Looking aside : The driver turns his head left and right.
Talking & laughing : The driver is talking or laughing while driving.
Sleepy-eyes : The driver closes his eyes due to drowsiness while driving.
Drowsy : The driver looks like sleepy and lethargic.(including nodding, slowly blinking and yawning.)
Stillness : The driver drives normally.
Yawning(打哈欠): 驾驶员由于困倦张大嘴巴。
Nodding: 当疲劳和睡着时驾驶员向前低下头。
Looking aside: 驾驶员向左或向右转头。
Talking & laughing: 在驾驶中,驾驶员说话或大笑。
Sleepy-eyes: 在驾驶中,驾驶员由于疲劳闭上眼睛。
Drowsy: 驾驶员看起来睡着和昏昏欲睡。(包括低头,缓慢眨眼和打哈欠。)
Stillness: 驾驶员正常驾驶。
--------------------------------------------------------------------------------------------------------
Training Dataset
The training dataset provides 18 subject folders. Each subject will contain five different scenarios(noglasses, glasses, night_noglasses, night_glasses, sunglasses),
and each scenario will contain 4 videos with different situation and corresponding annotation files.
"yawning.avi" :The video includes yawning behaviors.
"slowBlinkWithNodding.avi" : The video includes sleepy-eyes and nodding behaviors.
"sleepyCombination.avi" : The video includes combination of drowsy behaviors, e.g. sleepy-eyes, yawning, nodding.
"nonsleepyCombination.avi" : The videos includes combination of non-drowsy behaviors, e.g. laughing, talking, looking aside.
[Notice] There is no video in Number-005 subject's night_glasses scenario.
训练集提供了18个人的文件夹。每个人包含了5个不同场景(noglasses, glasses, night_noglasses, night_glasses, sunglasses),
每个场景包含4个视频,含有不同的状况和相关的标注文件。
"yawning.avi" :包含了打哈欠的行为.
"slowBlinkWithNodding.avi" : 包含了睡着的眼睛和低头行为。
"sleepyCombination.avi" : 包含有各种疲劳行为,如睡着的眼睛、打哈欠、低头。
"nonsleepyCombination.avi" : 包含了不疲劳的各种行为,如大笑、说话、四处看。
[注意] 在005中没有night_glasses场景。
--------------------------------------------------------------------------------------------------------
Evaluation Dataset
The evaluation dataset provides 4 subject folders. Each subject will contain 5 videos with different scenarios and corresponding annotation files. The videos would perform
various situations with different drowsy, non-drowsy status transition.
验证集提供了4个人的文件夹。每个人包含5个在不同场景下的视频和相关的标注文件。视频展示了不同状况,其中有疲劳、非疲劳的状态转换。
--------------------------------------------------------------------------------------------------------
Annotation
There are four annotations of each video and a single digit is used to indicate the status of the frame.
[video name]_drowsiness.txt : 0 means Stillness and 1 means Drowsy.
[video name]_head.txt : 0 means Stillness, 1 means Nodding and 2 means Looking aside.
[video name]_mouth.txt : 0 means Stillness and 1 means Yawning and 2 means Talking & Laughing.
[video name]_eye.txt : 0 means Stillness and 1 means Sleepy-eyes.
每个视频中有4个标注,一个数字用来表示帧的状态。
drowsiness: 0---Stillness, 1---Drowsy.
head: 0---Stillness, 1---Nodding, 2---Looking aside.
mouth: 0---Stillness, 1---Yawning, 2---Talking & Laughing.
eye: 0---Stillness, 1---Sleepy-eyes.
--------------------------------------------------------------------------------------------------------
Evaluation Function
The evaluation function consists of both Matlab and C++ version and is provided for user to evaluate the drowsiness performance on the evaluation dataset. It supports any environment that contains Matlab or C++ compiler.The function allows:
(1) evaluate the drowsy results(*_drowsiness.txt) for the evaluation dataset;
(2) output the accuracy score for both indivial video and overall video.
In order to use the evaluation function with your detection algorithm, you will have to make sure the format of your algorithm and compared groud-truth is indentical.
For more details, please find the instruction in the function.
Driver drowsy detection dataset的更多相关文章
- 目标检测数据集The Object Detection Dataset
目标检测数据集The Object Detection Dataset 在目标检测领域,没有像MNIST或Fashion MNIST这样的小数据集.为了快速测试模型,我们将组装一个小数据集.首先,我们 ...
- UR fall detection dataset
http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html
- 课程四(Convolutional Neural Networks),第三 周(Object detection) —— 2.Programming assignments:Car detection with YOLOv2
Autonomous driving - Car detection Welcome to your week 3 programming assignment. You will learn abo ...
- Autonomous driving - Car detection YOLO
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- YOLO object detection with OpenCV
Click here to download the source code to this post. In this tutorial, you’ll learn how to use the Y ...
- code and dataset resources of computer vision
From:http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html Source Code Non-exhaustiv ...
- 【计算机视觉】detection/region/object proposal 方法综述文章
目录(?)[-] Papers 大纲 各种OP方法的回顾 Grouping proposal methods Window scoring proposal methods Aliternate pr ...
- Viola–Jones object detection framework--Rapid Object Detection using a Boosted Cascade of Simple Features中文翻译 及 matlab实现(见文末链接)
ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001 Rapid Object Detection using a B ...
- MBMD(MobileNet-based tracking by detection algorithm)作者答疑
If you fail to install and run this tracker, please email me (zhangyunhua@mail.dlut.edu.cn) Introduc ...
随机推荐
- [转载]pytest学习笔记
pytest学习笔记(三) 接着上一篇的内容,这里主要讲下参数化,pytest很好的支持了测试函数中变量的参数化 一.pytest的参数化 1.通过命令行来实现参数化 文档中给了一个简单的例子, ...
- 在js中获取 input checkbox里选中的多个值
思路:利用name属性值获取checkbox对象,然后循环判断checked属性(true表示被选中,false表示未选中).下面进行实例演示: 1.html中展示: <input type=& ...
- 【Android-布局复用】 多个界面复用一个布局文件(一)
1.layout_common.xml 复用的布局文件 <?xml version="1.0" encoding="utf-8"?> <!-- ...
- SQL Server 基础:ADO.NET
序言 Connection 主要提供与数据库的连接功能 Command 用于返回数据.修改数据.运行存储过程以及发送或检索参数信息的数据库命令 CommandType 获取或设置Command对象要执 ...
- frontEnd(前端基础)
第一章:前端概述 第二章:前端三剑客 第三章:第一个页面 第四章:html常用标签 第五章:标签分类 第六章:css三种引入方式 第七章:样式与长度颜色 第八章:常用样式 第九章:CSS选择器 第十章 ...
- Spring Boot中@OneToMany与@ManyToOne几个需要注意的问题
@OneToMany如果不加@JoinColumn,系统会自动在主从表中增加一个中间表. 主表: @Entity(name = "Post") public class Post ...
- Django基础之命名URL和URL反向解析
在使用Django项目时,一个常见的需求是获得URL的最终形式,以用于嵌入到生成的内容中(视图中和显示给用户的URL等)或者用于处理服务器端的导航(重定向等). 人们强烈希望不要硬编码这些URL(费力 ...
- INNER JOIN连接两个表、三个表、五个表的SQL语句
1.连接两个数据表的用法: FROM Member INNER JOIN MemberSort ON Member.MemberSort=MemberSort.MemberSort 语法格式可以概括为 ...
- HDU 4496 D-City —— (并查集的应用)
给出n个点和m条边,一条一条地删除边,问每次删除以后有多少个联通块. 分析:其实就是并查集的应用,只是前一阵子一直做图论思路一直囿于tarjan了..方法就是,记录每一条边,然后从最后一条边开始不断的 ...
- Java 标准 IO 流编程一览笔录( 下 )
8.回推流:PushbackInputStream与PushbackReader PushbackInputStream/PushbackReader 用于解析InputStream/Reader内的 ...