tensorflow源码分析——BasicLSTMCell
BasicLSTMCell 是最简单的LSTMCell,源码位于:/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py。
BasicLSTMCell 继承了RNNCell,源码位于:/tensorflow/python/ops/rnn_cell_impl.py
注意事项:
1. input_size 这个参数不能使用,使用的是num_units
2. state_is_tuple 官方建议设置为True。此时,输入和输出的states为c(cell状态)和h(输出)的二元组
3. 输入、输出、cell的维度相同,都是 batch_size * num_units,
cell = tf.contrib.rnn.BasicLSTMCell(num_units, forget_bias=0.0, state_is_tuple=True) #指定num_units
_initial_state = cell.zero_state(batch_size, tf.float32) #指定batch_size,将c和h全部初始化为0,shape全是batch_size * num_units,
4.
class BasicLSTMCell(RNNCell):
"""Basic LSTM recurrent network cell. The implementation is based on: http://arxiv.org/abs/1409.2329. We add forget_bias (default: 1) to the biases of the forget gate in order to
reduce the scale of forgetting in the beginning of the training. It does not allow cell clipping, a projection layer, and does not
use peep-hole connections: it is the basic baseline. For advanced models, please use the full LSTMCell that follows.
""" def __init__(self, num_units, forget_bias=1.0, input_size=None,
state_is_tuple=True, activation=tanh):
"""Initialize the basic LSTM cell. Args:
num_units: int, The number of units in the LSTM cell.
forget_bias: float, The bias added to forget gates (see above).
input_size: Deprecated and unused.
state_is_tuple: If True, accepted and returned states are 2-tuples of
the `c_state` and `m_state`. If False, they are concatenated
along the column axis. The latter behavior will soon be deprecated.
activation: Activation function of the inner states.
"""
if not state_is_tuple:
logging.warn("%s: Using a concatenated state is slower and will soon be "
"deprecated. Use state_is_tuple=True.", self)
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation @property
def state_size(self):
return (LSTMStateTuple(self._num_units, self._num_units)
if self._state_is_tuple else 2 * self._num_units) @property
def output_size(self):
return self._num_units def __call__(self, inputs, state, scope=None):
"""Long short-term memory cell (LSTM)."""
with vs.variable_scope(scope or "basic_lstm_cell"):
# Parameters of gates are concatenated into one multiply for efficiency.
if self._state_is_tuple:
c, h = state
else:
c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1) # 线性计算 concat = [inputs, h]W + b
# 线性计算,分配W和b,W的shape为(2*num_units, 4*num_units), b的shape为(4*num_units,),共包含有四套参数,
# concat shape(batch_size, 4*num_units)
# 注意:只有cell 的input和output的size相等时才可以这样计算,否则要定义两套W,b.每套再包含四套参数
concat = _linear([inputs, h], 4 * self._num_units, True, scope=scope) # i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1) new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) *
self._activation(j))
new_h = self._activation(new_c) * sigmoid(o) if self._state_is_tuple:
new_state = LSTMStateTuple(new_c, new_h)
else:
new_state = array_ops.concat([new_c, new_h], 1)
return new_h, new_state
5. lstm层,每一batch的运算
with tf.variable_scope("RNN"):
for time_step in range(num_steps):
if time_step > 0: tf.get_variable_scope().reuse_variables()
(cell_output, state) = cell(inputs[:, time_step, :], state)
outputs.append(cell_output)
6. 每一epoch
7.全部运算
tensorflow源码分析——BasicLSTMCell的更多相关文章
- tensorflow源码分析
前言: 一般来说,如果安装tensorflow主要目的是为了调试些小程序的话,只要下载相应的包,然后,直接使用pip install tensorflow即可. 但有时我们需要将Tensorflow的 ...
- tensorflow源码分析——LSTMCell
LSTMCell 是最简单的LSTMCell,源码位于:/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py.LSTMCell 继承了RNN ...
- 图解tensorflow 源码分析
http://www.cnblogs.com/yao62995/p/5773578.html https://github.com/yao62995/tensorflow
- tensorflow源码分析——CTC
CTC是2006年的论文Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurren ...
- [tensorflow源码分析] Conv2d卷积运算 (前向计算,反向梯度计算)
- [图解tensorflow源码] 入门准备工作附常用的矩阵计算工具[转]
[图解tensorflow源码] 入门准备工作 附常用的矩阵计算工具[转] Link: https://www.cnblogs.com/yao62995/p/5773142.html tensorf ...
- [图解tensorflow源码] 入门准备工作
tensorflow使用了自动化构建工具bazel.脚本语言调用c或cpp的包裹工具swig.使用EIGEN作为矩阵处理工具.Nvidia-cuBLAS GPU加速计算库.结构化数据存储格式prot ...
- [图解tensorflow源码] [原创] Tensorflow 图解分析 (Session, Graph, Kernels, Devices)
TF Prepare [图解tensorflow源码] 入门准备工作 [图解tensorflow源码] TF系统概述篇 Session篇 [图解tensorflow源码] Session::Run() ...
- TensorFlow源码框架 杂记
一.为什么我们需要使用线程池技术(ThreadPool) 线程:采用“即时创建,即时销毁”策略,即接受请求后,创建一个新的线程,执行任务,完毕后,线程退出: 线程池:应用软件启动后,立即创建一定数量的 ...
随机推荐
- 【Day2】2.函数
视频地址(全部) https://edu.csdn.net/course/detail/26057 课件地址(全部) https://download.csdn.net/download/gentl ...
- Oracle【增删改&数据的备份】
增删改的SQL语句执行完毕后,不会立马进行数据的写入数据库(这时数据在内存中),需要手动对数据进行提交(commit),如果数据出问题,可以使用回滚.主键:非空唯一的 --在一张表中,某字段值是非空唯 ...
- IPC之msgutil.c源码解读
// SPDX-License-Identifier: GPL-2.0-or-later /* * linux/ipc/msgutil.c * Copyright (C) 1999, 2004 Man ...
- 1. LVS概述
1.LVS介绍 LVS是linux virtual server的简写linux虚拟服务器,是一个虚拟的服务器集群系统,可以再unix/linux平台下实现负载均衡集群功能 2.LVS组成 LVS由2 ...
- Perl环境安装
在我们开始学习 Perl 语言前,我们需要先安装 Perl 的执行环境. Perl 可以在以下平台下运行: Unix (Solaris, Linux, FreeBSD, AIX, HP/UX, Sun ...
- Linux ping route nslookup ifconfig arp traceroute
route -n 查看默认网关 ping -c 包个数 ping -s 包大小 host 目标主机 主机解析 nslookup 目标主机 arp -an 查看arp arp -s IP地 MA ...
- Beta冲刺版本第三天
该作业所属课程:https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass2 作业要求地址:https://edu.cnblogs.com ...
- Android异常与性能优化相关面试问题-其他优化面试问题详解
Android不用静态变量存储数据: 静态变量等数据由于进程已经被杀死而被初始化.在Android中应用进程不是安全的,因为它会有系统给kill掉,但是在实际中可能会有这样的一个假象:当app被杀掉之 ...
- kylin实战(一)
kylin适用场景 OLAP 它适合数据量大,查询维度多,但是业务改动不频繁的场景.因为业务多,则kylin的cube很多.每次业务变更,kylin修改的工作量大,且每次全量跑数据耗费时间比较长. 它 ...
- 小程序wx.showToast()方法实现文字换行
小程序wx.showToast()方法实现文字换行 在文字中间加上 '\r\n' 真机中生效 wx.showToast({ title: `换行前内容\r\n换行后内容`, icon: 'none' ...