题目描述

给出nnn个666维坐标,求有多少对点对满足恰好mmm个位置相等

1&lt;=n&lt;=1051&lt;=n&lt;=10^51<=n<=105

0&lt;=k&lt;=60&lt;=k&lt;=60<=k<=6

坐标数值在2302^{30}230以内

题目分析

这道题一看就是hash容斥原理,用mmm个位置对应相等−(m+1)-(m+1)−(m+1)个位置对应相等+(m+2)+(m+2)+(m+2)个位置对应相等的…

但是不能简简单单直接+/−+/-+/−,根据广义容斥,还要乘上容斥系数CkmC_{k}^{m}Ckm​

双HashHashHash,过程中遇到Hash1Hash1Hash1相同但Hash2Hash2Hash2不同的就往后平移,用数组存一下Hash1Hash1Hash1为kkk时的Hash2Hash2Hash2值与CntCntCnt值

注意此处ModModMod数要大于nnn

考试时没用双Hash,想到了做法,奈何代码太丑,这题爆0了…

AC code
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int MAXN = 100005;
const int P1 = 137, Mod1 = 9999997;
const int P2 = 167, Mod2 = 7394895;
int num[MAXN][6], c[7][7], kase, n, m;
struct MyHash
{
LL y; int flag, cnt; //y存的是Hash1为当前下标i时的Hash2值
//flag是用int打标记,就不用每次清零了
bool Exist() { return flag == kase; }
}h[Mod1];
LL Ans;
void init()
{
for(int i = 0; i < 7; ++i)
{
c[i][0] = c[i][i] = 1;
for(int j = 1; j < i; ++j)
c[i][j] = c[i-1][j-1] + c[i-1][j];
}
} inline void MyUnique(LL &x, LL o)
{
while(h[x].Exist() && h[x].y != o) (++x) %= Mod1;
} bool used[7];
void dfs(int pos, int tot)//枚举当前是求哪几个位置
{
if(pos == 6)
{
if(tot < m) return; //小于m的不用处理
LL sum = 0; ++kase;
for(int i = 1; i <= n; ++i)
{
LL hsh1 = 0, hsh2 = 0;
for(int j = 0; j < 6; ++j) if(used[j])
hsh1 = (hsh1 * P1 % Mod1 + num[i][j]) % Mod1,
hsh2 = (hsh2 * P2 % Mod2 + num[i][j]) % Mod2;
MyUnique(hsh1, hsh2);
if(h[hsh1].flag < kase)
h[hsh1].cnt = 0, h[hsh1].flag = kase;
h[hsh1].y = hsh2, sum += (h[hsh1].cnt++);
}
Ans += sum * (((tot-m)&1) ? -1 : 1) * c[tot][m]; //容斥
return;
}
used[pos] = 1;
dfs(pos+1, tot+1);
used[pos] = 0;
dfs(pos+1, tot);
} int main ()
{
scanf("%d%d", &n, &m); init();
for(int i = 1; i <= n; ++i)
for(int j = 0; j < 6; ++j)
scanf("%d", &num[i][j]);
dfs(0, 0);
printf("%lld\n", Ans);
}

[Sdoi2013] [bzoj 3198] spring (hash+容斥原理)的更多相关文章

  1. [BZOJ 3198] [Sdoi2013] spring 【容斥 + Hash】

    题目链接:BZOJ - 3198 题目分析 题目要求求出有多少对泉有恰好 k 个值相等. 我们用容斥来做. 枚举 2^6 种状态,某一位是 1 表示这一位相同,那么假设 1 的个数为 x . 答案就是 ...

  2. bzoj 3198 [Sdoi2013]spring(容斥原理+Hash)

    Description Input Output Sample Input 3 3 1 2 3 4 5 6 1 2 3 0 0 0 0 0 0 4 5 6 Sample Output 2 HINT [ ...

  3. BZOJ 3198: [Sdoi2013]spring [容斥原理 哈希表]

    3198: [Sdoi2013]spring 题意:n个物品6个属性,求有多少不同的年份i,j满足有k个属性对应相等 一开始读错题了,注意是对应相等 第i个属性只能和第i个属性对应 容斥一下 \[ 恰 ...

  4. 3198: [Sdoi2013]spring【容斥原理+hash】

    容斥是ans= 至少k位置相等对数C(k,k)-至少k+1位置相等对数C(k+1,k)+至少k+2位置相等对数*C(k+2,k) -- 然后对数的话2^6枚举状态然后用hash表统计即可 至于为什么要 ...

  5. BZOJ 3198 SDOI2013 spring

    为什么SDOI省选一年考两次容斥原理? 我们很容易发现>=k个相等时很好计算的 但是我们要求恰好k个,那么我们容斥即可 至于计算>=k个相等,首先我们枚举相等位置,对每个串对应位置做一遍h ...

  6. 【BZOJ 3098】 Hash Killer II

    Description 这天天气不错,hzhwcmhf神犇给VFleaKing出了一道题:给你一个长度为N的字符串S,求有多少个不同的长度为L的子串.子串的定义是S[l].S[l + 1].... S ...

  7. BZOJ 4455: [Zjoi2016]小星星 [容斥原理 树形DP]

    4455: [Zjoi2016]小星星 题意:一个图删掉一些边形成一棵树,告诉你图和树的样子,求让图上的点和树上的点对应起来有多少方案 看了很多题解又想了一段时间,感觉题解都没有很深入,现在大致有了自 ...

  8. BZOJ 3771 Triple FFT+容斥原理

    解析: 这东西其实就是指数型母函数? 所以刚开始读入的值我们都把它前面的系数置为1. 然后其实就是个多项式乘法了. 最大范围显然是读入的值中的最大值乘三,对于本题的话是12W? 用FFT优化的话,达到 ...

  9. bzoj 2839 : 集合计数 容斥原理

    因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$ 确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理. 我们还剩下$n-k$个元素,交集至少为 ...

随机推荐

  1. [转帖]iis最大并发连接数、队列长度、最大并发线程数、最大工作进程数

    iis最大并发连接数.队列长度.最大并发线程数.最大工作进程数 2018-10-17 12:49:03 牛兜兜 阅读数 2952   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议 ...

  2. Bean配置

    1.xml配置(摘抄自:https://www.cnblogs.com/zyx1301691180/p/7665971.html) 一.setter方法配置Bean: 1.创建一个 Spring Be ...

  3. Java线程同步synchronized的理解

    JVM中(留神:马上讲到的这两个存储区只在JVM内部与物理存储区无关)存在一个主内存(Main Memory),Java中所有的变量存储在主内存中,所有实例和实例的字段都在此区域,对于所有的线程是共享 ...

  4. WUSTOJ 1346: DARK SOULS(Java)并查集

    题目链接:1346: DARK SOULS 并查集系列:WUSTOJ 1319: 球(Java)并查集 Description CQ最近在玩一款游戏:DARK SOULS,这是一款以高难度闻名的硬派动 ...

  5. closed channel

    func Test_chanel(t *testing.T) { c := make(chan int, 1) go func() { time.Sleep(time.Second * 3) clos ...

  6. 【并发】7、借助redis 实现多线程生产消费队列

    1.这是第一个简单的初始化版本,看起来比使用fqueue似乎更好用 package queue.redisQueue; import queue.fqueue.vo.TempVo; import re ...

  7. Android--DES加密

    Base64.java import java.io.ByteArrayOutputStream; import java.io.IOException; import java.io.OutputS ...

  8. Security Access Control Strategy && Method And Technology Research - 安全访问控制策略及其方法技术研究

    1. 访问控制基本概念 访问控制是网络安全防范和客户端安全防御的重要基础策略,它的主要任务是保证资源不被非法使用.保证网络/客户端安全最重要的核心策略之一. 访问控制包括 入网访问控制 网络权限控制 ...

  9. 怎样检测浏览器是否安装了某个插件, 比如flash

    首先, 我们可以获取浏览器安装的所有在插件: navigator.plugins 它会返回一个类似数组的对象, 包含所有已安装插件的具体信息. navigator.plugins; 然后我们可以通过正 ...

  10. element-ui里的form校验,一直有点疑惑,prop是怎么对应的?

    图一 图一中红框内的这种校验,必须在 这个product_form数据域内定义对应的变量名(cid.itemName......),不然对应不上. 图一红框外的那种校验,则不用在数据域内定义对应的变量 ...