P3119 [USACO15JAN]草鉴定Grass Cownoisseur

题目描述

In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X.

Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once).

As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ's paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.

约翰有n块草场,编号1到n,这些草场由若干条单行道相连。奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草。

贝西总是从1号草场出发,最后回到1号草场。她想经过尽可能多的草场,贝西在通一个草场只吃一次草,所以一个草场可以经过多次。因为草场是单行道连接,这给贝西的品鉴工作带来了很大的不便,贝西想偷偷逆向行走一次,但最多只能有一次逆行。问,贝西最多能吃到多少个草场的牧草。

输入格式

INPUT: (file grass.in)

The first line of input contains N and M, giving the number of fields and the number of one-way paths (1 <= N, M <= 100,000).

The following M lines each describe a one-way cow path. Each line contains two distinct field numbers X and Y, corresponding to a cow path from X to Y. The same cow path will never appear more than once.

输入:

第一行:草场数n,道路数m。

以下m行,每行x和y表明有x到y的单向边,不会有重复的道路出现。

输出格式

OUTPUT: (file grass.out)

A single line indicating the maximum number of distinct fields Bessie

can visit along a route starting and ending at field 1, given that she can

follow at most one path along this route in the wrong direction.

输出:

一个数,逆行一次最多可以走几个草场。

输入输出样例

输入 #1复制

输出 #1复制

说明/提示

SOLUTION NOTES:

Here is an ASCII drawing of the sample input:

v---3-->6
7 | \ |
^\ v \|
| \ 1 |
| | v
| v 5
4<--2---^

Bessie can visit pastures 1, 2, 4, 7, 2, 5, 3, 1 by traveling

backwards on the path between 5 and 3. When she arrives at 3 she

cannot reach 6 without following another backwards path.

思路:

首先用tarjian缩点,缩点后是一个有向无环图。每一个点的点权是他所在的SCC中节点的个数。

然后从一号节点所在的scc块进行SPFA找最长路,可以得到dis1[i] 代表从1所在联通块为始点走到scc_i的最大权值。

然后反向建边跑最长路,可以得到dis1[i] 代表从i所在联通块scc_i为始点,scc_1 为终点的最大权值。

然后枚举所有scc_i,如果scc_1可以到达scc_i,且 有scc_j为起点到scc_i 为终点的边,scc_j可以到达scc_1,则尝试逆行该边,更新答案,维护最大值。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int* p);
const int maxn = 500010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int From[maxn], Laxt[maxn], To[maxn << 2], Next[maxn << 2], cnt;
int low[maxn], dfn[maxn], times, qq[maxn], head, scc_cnt, scc[maxn];
bool inst[maxn];
vector<int>G[maxn];
void add(int u, int v)
{
Next[++cnt] = Laxt[u]; From[cnt] = u;
Laxt[u] = cnt; To[cnt] = v;
}
int c[maxn];
void tarjan(int u)
{
dfn[u] = low[u] = ++times;
qq[++head] = u;
inst[u] = 1;
for (int i = Laxt[u]; i; i = Next[i]) {
if (!dfn[To[i]]) {
tarjan(To[i]);
low[u] = min(low[u], low[To[i]]);
} else if (inst[To[i]]) {
low[u] = min(low[u], dfn[To[i]]);
}
}
if (low[u] == dfn[u]) {
scc_cnt++;
while (true) {
int x = qq[head--];
scc[x] = scc_cnt;
c[scc_cnt]++;
inst[x] = 0;
if (x == u) { break; }
}
}
} int n, m;
std::vector<int> v1[maxn], v2[maxn];
int dis1[maxn];
int dis2[maxn];
queue<int> q;
bool vis[maxn];
void spfa1(int S)
{
dis1[S] = c[S];
q.push(S);
while (!q.empty())
{
int now = q.front();
q.pop();
for (auto y : v1[now])
{
if (dis1[y] < dis1[now] + c[y])
{
dis1[y] = dis1[now] + c[y];
if (!vis[y])
{
q.push(y);
vis[y] = 1;
}
}
}
vis[now] = 0;
}
}
void spfa2(int S)
{
dis2[S] = c[S];
q.push(S);
while (!q.empty())
{
int now = q.front();
q.pop();
for (auto y : v2[now])
{
if (dis2[y] < dis2[now] + c[y])
{
dis2[y] = dis2[now] + c[y];
if (!vis[y])
{
q.push(y);
vis[y] = 1;
}
}
}
vis[now] = 0;
}
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
du2(n, m);
while (m--)
{
int x, y;
du2(x, y);
add(x, y);
}
repd(i, 1, n)
{
if (!dfn[i])
{
tarjan(i);
}
}
repd(u, 1, n)
{
for (int i = Laxt[u]; i; i = Next[i])
{
if (scc[u] != scc[To[i]])
{
// cout<<u<<" "<<To[i]<<" "<<scc[u]<<" "<<scc[To[i]]<<endl;
v1[scc[u]].push_back(scc[To[i]]);
v2[scc[To[i]]].push_back(scc[u]);
}
}
}
spfa1(scc[1]);
spfa2(scc[1]);
int ans = c[scc[1]];
repd(i, 1, scc_cnt)
{
if (vis[i] == 0 && dis1[i])
{
vis[i] = 1;
for (auto y : v2[i])
{
if (!dis2[y])
continue;
ans = max(ans, dis1[i] + dis2[y] - c[scc[1]]);
}
}
}
printf("%d\n", ans); return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur (SCC缩点,SPFA最长路,枚举反边)的更多相关文章

  1. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur 解题报告

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 约翰有\(n\)块草场,编号1到\(n\),这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可 ...

  2. 洛谷——P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...

  3. 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur

    http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...

  4. 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    屠龙宝刀点击就送 Tarjan缩点+拓扑排序 以后缩点后建图看n范围用vector ,或者直接用map+vector 结构体里数据要清空 代码: #include <cstring> #i ...

  5. 洛谷3119 [USACO15JAN]草鉴定Grass Cownoisseur

    原题链接 显然一个强连通分量里所有草场都可以走到,所以先用\(tarjan\)找强连通并缩点. 对于缩点后的\(DAG\),先复制一张新图出来,然后对于原图中的每条边的终点向新图中该边对应的那条边的起 ...

  6. P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  7. 洛谷P3119 USACO15JAN 草鉴定

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  8. luogu P3119 [USACO15JAN]草鉴定Grass Cownoisseur

    题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...

  9. P3119 [USACO15JAN]草鉴定Grass Cownoisseur 分层图或者跑两次最长路

    https://www.luogu.org/problemnew/show/P3119 题意 有一个有向图,允许最多走一次逆向的路,问从1再走回1,最多能经过几个点. 思路 (一)首先先缩点.自己在缩 ...

随机推荐

  1. fatal error: nvcuvid.h: No such file

    https://www.cnblogs.com/rabbull/p/11154997.html

  2. edusoho twig 引入文件功能

    在这里不得不提 edusoho twig 模板引擎了 跟smarty 比较类似 不过感觉还是更好一点儿 这里用的标签就只有一个 {% include '路径/文件名' %} 大家在首页做的改动比较多 ...

  3. 最新 浪潮java校招面经 (含整理过的面试题大全)

    从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.浪潮等10家互联网公司的校招Offer,因为某些自身原因最终选择了浪潮.6.7月主要是做系统复习.项目复盘.LeetCode ...

  4. 带你手写基于 Spring 的可插拔式 RPC 框架(四)代理类的注入与服务启动

    上一章节我们已经实现了从客户端往服务端发送数据并且通过反射方法调用服务端的实现类最后返回给客户端的底层协议. 这一章节我们来实现客户端代理类的注入. 承接上一章,我们实现了多个底层协议,procoto ...

  5. eNSP使用-不同网段的互联

    就像下面这个场景: 1.基本配置 先点击左上角的——新建 然后咱们把要用的设备都拖到面板上去 成品就是这样的: 点击这个为他们添加备注 我们来配置一下实验编址 右键单击PC1设置(PC2同理,就不多演 ...

  6. 洛谷 题解 CF903B 【The Modcrab】

    如果它在接下来一回合能一下就将你KO了,那么,你就十分需要回血(一直回到它一下敲不死你),否则你就一直打它就好了. #include<iostream> using namespace s ...

  7. Linux用户管理重要初始化目录login

    /etc/login.defs 配置文件 /etc/login.defs  文件是用来定义创建用户时需要的一些用户的配置信息.如创建用户时,是否需要家目录,UID和GID的范围,用户及密码的有效期限等 ...

  8. 【转】Windows 7下用VMware Workstation 10虚拟机安装 Ubuntu 14.04

    一.软件下载 1.VMware Workstation v10.0.1虚拟机官方简体中文版下载(附永久KEY注册密钥) http://www.linuxidc.com/Linux/2012-11/73 ...

  9. redis主从复制初识

    一.作用 slave会通过被复制同步master上面的数据,形成数据副本 当master节点宕机时,slave可以升级为master节点承担写操作. 允许有一主多从,slave可以承担读操作,提高读性 ...

  10. 【数据库-SQL Server】IDispatch error #3092

    使用msado15.tlh,链接Microsoft SQL Server,执行语法(syntax)的时候出现IDispatch error #3092的错误. 1.语法错误 (1)保证语法正确,有些数 ...