sklearn--决策树和基于决策树的集成模型
一.决策树
决策树一般以选择属性的方式不同分为id3(信息增益),c4.5(信息增益率),CART(基尼系数),只能进行线性的分割,是一种贪婪的算法,其中sklearn中的决策树分为回归树和分类树两种,默认的是CART的决策树,下面介绍CART决策树
分支条件:二分类问题(只用来构建二叉树)
分支方法:对于连续特征的情况:比较阈值,高于某个阈值就属于某一类,低于某个阈值属于另一类。对于离散特征:抽取子特征,比如颜值这个特征,有帅、丑、中等三个水平,可以先分为帅和不帅的,不帅的里面再分成丑和中等的。
得分函数(y):分类树基尼系数的最小值得特征或是最终的叶节点分类结果,对于回归树取得是均值。
损失函数:其实这里的损失函数,就是分类的准则,也就是求最优化的准则
对于分类树(目标变量为离散变量):同一层所有分支假设函数的基尼系数的平均。
对于回归树(目标变量为连续变量):同一层所有分支假设函数的平方差损失
在二维空间(只有一个特征)其实对于回归树来说就是一个通过建立一个分段的平行线函数(一块接近的数据用他们的均值来代替)来逼近最后的目标值,而想通过这种方式来要得到要设置树的深度,但是书的深度很深的话就会使得模型有过拟合的风险
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeClassifier
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_1 = DecisionTreeClassifierr(max_depth=5)
regr_2.fit(X, y)
regr_1.fit(X, y)
二.随机森林
我们通过随机的抽取部分样本,抽取部分的特征,来训练多颗决策树,然后通过投票表决的方式来决定最终的分类(这是分类问题,若是回归问题则是取最后结果的均值)在森林中每一棵树都有平等的发言权,这种随机深林是基于bagging的集成学习的方法,极大可能的过滤掉特征的误差和样本可能存在的误差.这里我们要注意的是:如果每个样本的特征维度为M,指定一个常数m<<M,随机地从M个特征中选取m个特征子集,每次树进行分裂时,从这m个特征中选择最优的,随机森林分类效果(错误率)与两个因素有关:
- 森林中任意两棵树的相关性:相关性越大,错误率越大;
- 森林中每棵树的分类能力:每棵树的分类能力越强,整个森林的错误率越低。
减小特征选择个数m,树的相关性和分类能力也会相应的降低;增大m,两者也会随之增大。所以关键问题是如何选择最优的m(或者是范围),这也是随机森林唯一的一个参数。
我们可以通过oob来衡量随机森林的好坏
from sklearn.ensemble import RandomForestClassifier
rf0 = RandomForestClassifier(oob_score=True, random_state=10)
rf0.fit(X,y)
print rf0.oob_score_
三.adaboost+决策树
自适应boost,思想是每一次选取误差最小的模型,然后将错误的值权值加重,输入给下一个模型,如果错误率越高其相应的模型权值就会变低
#设定弱分类器CART
weakClassifier=DecisionTreeClassifier(max_depth=1) #构建模型。
clf=AdaBoostClassifier(base_estimator=weakClassifier,algorithm='SAMME',n_estimators=300,learning_rate=0.8)
clf.fit(X, y)
四.GBDT(梯度提升决策树)
https://blog.csdn.net/qq_22238533/article/details/79199605 gbdt的一些讲解,
五.XGBOOST
sklearn--决策树和基于决策树的集成模型的更多相关文章
- 决策树和基于决策树的集成方法(DT,RF,GBDT,XGBT)复习总结
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...
- 决策树和基于决策树的集成方法(DT,RF,GBDT,XGB)复习总结
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...
- Python机器学习(基础篇---监督学习(集成模型))
集成模型 集成分类模型是综合考量多个分类器的预测结果,从而做出决策. 综合考量的方式大体分为两种: 1.利用相同的训练数据同时搭建多个独立的分类模型,然后通过投票的方式,以少数服从多数的原则作出最终的 ...
- 『Kaggle』分类任务_决策树&集成模型&DataFrame向量化操作
决策树这节中涉及到了很多pandas中的新的函数用法等,所以我单拿出来详细的理解一下这些pandas处理过程,进一步理解pandas背后的数据处理的手段原理. 决策树程序 数据载入 pd.read_c ...
- 用Sklearn画一颗决策树
小伙伴们大家好~o( ̄▽ ̄)ブ,首先声明一下,我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上 Scikit-learn 0.20.0 ...
- [Machine Learning & Algorithm] 决策树与迭代决策树(GBDT)
谈完数据结构中的树(详情见参照之前博文<数据结构中各种树>),我们来谈一谈机器学习算法中的各种树形算法,包括ID3.C4.5.CART以及基于集成思想的树模型Random Forest和G ...
- 【集成模型】Bootstrap Aggregating(Bagging)
0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...
- DeepMind提出空间语言集成模型SLIM,有效编码自然语言的空间关系
前不久,DeepMind 提出生成查询网络 GQN,具备从 2D 画面到 3D 空间的转换能力.近日.DeepMind 基于 GQN 提出一种新模型.可以捕捉空间关系的语义(如 behind.left ...
- .NET - 基于事件的异步模型
注:这是大概四年前写的文章了.而且我离开.net领域也有四年多了.本来不想再发表,但是这实际上是Active Object模式在.net中的一种重要实现方法,因此我把它掏出来发布一下.如果该模型有新的 ...
随机推荐
- WhatsApp Group vs WhatsApp Broadcast for Business
WhatsApp Group vs WhatsApp Broadcast for Business By Iaroslav Kudritskiy If you've read our Ultimate ...
- 【ARM-Linux开发】Linux链接
链接有两种方式:硬链接和软链接. (一)软链接 软链接又叫做符号链接.基本命令为: [plain] view plain copy ln -s sourcePlace newPlace 软链接可以链接 ...
- js的new Date兼容iOS和Android
在写一个移动端的报名活动页面时,其中一个逻辑是:过了报名日期,“立即报名”按钮置灰,不允许报名:具体逻辑如下,在真机上测试的时候,Android端可以把按钮失效,iOS则是无法把按钮失效.后台返回的时 ...
- java实现List<People>的排序
1.首先新建测试的实体类(People类): import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsCon ...
- 报表工具ActiveReports开发实例——物联网智能供水云平台
一.公司简介 山西汾西电子科技股份有限公司(以下简称:汾西电子)是经中国船舶重工集团批准,在原汾西重工电子科技公司基础上重组的专业从事智能电能表.水表.热量表及电动汽车充电设备研发生产的高科技公司. ...
- SQL语句中的HAVING关键字
sql中的having语句是在使用group by的时候使用的. 通常where语句是在group by之前做数据筛选的,而having语句是对group by之后的结果进行筛选的. 例如: 从商品销 ...
- c# bitmap的拷贝及一个图像工具类
using (Bitmap bmp = new Bitmap(scanImgPath)) { Bitmap bitmap = new Bitmap(bmp.Width, bmp.Height, Pix ...
- 第7章:LeetCode--算法:递归问题
70. Climbing Stairs This problem is a Fibonacci problem.F(n)=F(n-1)+F(n-2);Solving this problem by r ...
- 散列查找的C实现
概念 散列查找,类似与查英文字典的过程.如果我们要查找"zoo"(key)对应的释义(value),我们不会从第一页开始逐页查找(顺序查找),而是直接根据大致的推算(Hash函数) ...
- 认识函数(python)
一般的函数都是有参数的,函数的参数都是放在函数定义的括号里的,函数参数的命名规则和我们说的变量的命名规则基本一样,一定要清晰明了.(能概括出它的意义,让人阅读你的代码,就知道这个参数是干嘛的就行).当 ...