一.决策树

决策树一般以选择属性的方式不同分为id3(信息增益),c4.5(信息增益率),CART(基尼系数),只能进行线性的分割,是一种贪婪的算法,其中sklearn中的决策树分为回归树和分类树两种,默认的是CART的决策树,下面介绍CART决策树

分支条件:二分类问题(只用来构建二叉树)

分支方法:对于连续特征的情况:比较阈值,高于某个阈值就属于某一类,低于某个阈值属于另一类。对于离散特征:抽取子特征,比如颜值这个特征,有帅、丑、中等三个水平,可以先分为帅和不帅的,不帅的里面再分成丑和中等的。

得分函数(y):分类树基尼系数的最小值得特征或是最终的叶节点分类结果,对于回归树取得是均值。

损失函数:其实这里的损失函数,就是分类的准则,也就是求最优化的准则

对于分类树(目标变量为离散变量):同一层所有分支假设函数的基尼系数的平均。

对于回归树(目标变量为连续变量):同一层所有分支假设函数的平方差损失

在二维空间(只有一个特征)其实对于回归树来说就是一个通过建立一个分段的平行线函数(一块接近的数据用他们的均值来代替)来逼近最后的目标值,而想通过这种方式来要得到要设置树的深度,但是书的深度很深的话就会使得模型有过拟合的风险

from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeClassifier
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_1 = DecisionTreeClassifierr(max_depth=5)
regr_2.fit(X, y)
regr_1.fit(X, y)

二.随机森林

我们通过随机的抽取部分样本,抽取部分的特征,来训练多颗决策树,然后通过投票表决的方式来决定最终的分类(这是分类问题,若是回归问题则是取最后结果的均值)在森林中每一棵树都有平等的发言权,这种随机深林是基于bagging的集成学习的方法,极大可能的过滤掉特征的误差和样本可能存在的误差.这里我们要注意的是:如果每个样本的特征维度为M,指定一个常数m<<M,随机地从M个特征中选取m个特征子集,每次树进行分裂时,从这m个特征中选择最优的,随机森林分类效果(错误率)与两个因素有关:

  • 森林中任意两棵树的相关性:相关性越大,错误率越大;
  • 森林中每棵树的分类能力:每棵树的分类能力越强,整个森林的错误率越低。

  减小特征选择个数m,树的相关性和分类能力也会相应的降低;增大m,两者也会随之增大。所以关键问题是如何选择最优的m(或者是范围),这也是随机森林唯一的一个参数。

我们可以通过oob来衡量随机森林的好坏

from sklearn.ensemble import RandomForestClassifier
rf0 = RandomForestClassifier(oob_score=True, random_state=10)
rf0.fit(X,y)
print rf0.oob_score_

三.adaboost+决策树

自适应boost,思想是每一次选取误差最小的模型,然后将错误的值权值加重,输入给下一个模型,如果错误率越高其相应的模型权值就会变低

#设定弱分类器CART
weakClassifier=DecisionTreeClassifier(max_depth=1) #构建模型。
clf=AdaBoostClassifier(base_estimator=weakClassifier,algorithm='SAMME',n_estimators=300,learning_rate=0.8)
clf.fit(X, y)

四.GBDT(梯度提升决策树)

https://blog.csdn.net/qq_22238533/article/details/79199605 gbdt的一些讲解,

五.XGBOOST

sklearn--决策树和基于决策树的集成模型的更多相关文章

  1. 决策树和基于决策树的集成方法(DT,RF,GBDT,XGBT)复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...

  2. 决策树和基于决策树的集成方法(DT,RF,GBDT,XGB)复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...

  3. Python机器学习(基础篇---监督学习(集成模型))

    集成模型 集成分类模型是综合考量多个分类器的预测结果,从而做出决策. 综合考量的方式大体分为两种: 1.利用相同的训练数据同时搭建多个独立的分类模型,然后通过投票的方式,以少数服从多数的原则作出最终的 ...

  4. 『Kaggle』分类任务_决策树&集成模型&DataFrame向量化操作

    决策树这节中涉及到了很多pandas中的新的函数用法等,所以我单拿出来详细的理解一下这些pandas处理过程,进一步理解pandas背后的数据处理的手段原理. 决策树程序 数据载入 pd.read_c ...

  5. 用Sklearn画一颗决策树

    小伙伴们大家好~o( ̄▽ ̄)ブ,首先声明一下,我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上 Scikit-learn 0.20.0 ...

  6. [Machine Learning & Algorithm] 决策树与迭代决策树(GBDT)

    谈完数据结构中的树(详情见参照之前博文<数据结构中各种树>),我们来谈一谈机器学习算法中的各种树形算法,包括ID3.C4.5.CART以及基于集成思想的树模型Random Forest和G ...

  7. 【集成模型】Bootstrap Aggregating(Bagging)

    0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...

  8. DeepMind提出空间语言集成模型SLIM,有效编码自然语言的空间关系

    前不久,DeepMind 提出生成查询网络 GQN,具备从 2D 画面到 3D 空间的转换能力.近日.DeepMind 基于 GQN 提出一种新模型.可以捕捉空间关系的语义(如 behind.left ...

  9. .NET - 基于事件的异步模型

    注:这是大概四年前写的文章了.而且我离开.net领域也有四年多了.本来不想再发表,但是这实际上是Active Object模式在.net中的一种重要实现方法,因此我把它掏出来发布一下.如果该模型有新的 ...

随机推荐

  1. MySQL数据库相关资料

    python 全栈开发,Day60(MySQL的前戏,数据库概述,MySQL安装和基本管理,初识MySQL语句) python 全栈开发,Day61(库的操作,表的操作,数据类型,数据类型(2),完整 ...

  2. python基础----redis模块

    数据库 关系型数据 例如mysql,有表还有约束条件等 非关系型 k-v形式 memcache 存在内存中 redis 存在内存 mongodb 数据存在磁盘 import redis #string ...

  3. Java中处理OPC寄存器数据类型

    1. 在milo中,处理WORD等数据类型 例子如下: VariableNode node = client.getAddressSpace().createVariableNode( new Nod ...

  4. bootstrap基础学习【排版】(一)

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  5. [OpenCV] 图像亮度和对比度调整

    对比度调整的原理参考这篇博客 以下是代码实现: #include <iostream> #include "opencv2/core.hpp" #include &qu ...

  6. 《你必须知道的495个C语言问题》读书笔记之第3章:表达式

    1. C语言的设计目标之一就是高效的实现——让C语言的编译器相对较小,容易写成,同时也更容易生成较好的代码. 2. Q:下面的代码打印出49.不管按什么顺序,难道不该是56吗? ; printf(&q ...

  7. (模板)poj3461(kmp模板题)

    题目链接:https://vjudge.net/problem/POJ-3461 题意:给出主串和模式串,求出模式串在主串中出现的次数. 思路:kmp板子题. AC代码: #include<cs ...

  8. [转帖]yaml语言格式

    yaml语言格式 YAML是"YAML Ain't a Markup Language"(YAML不是一种标记语言),强调这种语言以数据做为中心,而不是以置标语言为重点. 转载2篇 ...

  9. 自然语言处理工具HanLP-基于层叠HMM地名识别

    本篇接上一篇内容<HanLP-基于HMM-Viterbi的人名识别原理介绍>介绍一下层叠隐马的原理. 首先说一下上一篇介绍的人名识别效果对比: 1. 只有Jieba识别出的人名 准确率极低 ...

  10. python的一些知识点

    1. 内置函数  iter 2. 可迭代对象与迭代器: