# -*- coding: utf-8 -*-
import numpy as np
np.random.seed(1337)
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import LSTM,TimeDistributed,Dense
from keras.optimizers import Adam BATCH_START = 0
TIME_STEPS = 20
BATCH_SIZE = 50
INPUT_SIZE = 1
OUTPUT_SIZE = 1
CELL_SIZE = 20
LR = 0.006 def get_batch():
global BATCH_START,TIME_STEPS
# xs shape(50,20,)
#xs=np.arange(0,0+20*50).reshape(50,20)
xs = np.arange(BATCH_START,BATCH_START+TIME_STEPS*BATCH_SIZE).reshape((BATCH_SIZE,TIME_STEPS)) / (10*np.pi)
seq = np.sin(xs)
res = np.cos(xs)
BATCH_START += TIME_STEPS
#plt.plot(xs[0,:],res[0,:],'r',xs[0,:],seq[0,:],'b--')
#plt.show()
return [seq[:,:,np.newaxis], res[:,:,np.newaxis],xs] #get_batch()
#exit() model = Sequential() model.add(LSTM(output_dim=CELL_SIZE,
return_sequences=True, # 每一个时间点都输出一个output
batch_input_shape=(BATCH_SIZE,TIME_STEPS,INPUT_SIZE),
stateful = True,# batch和batch之间是否有联系
# 前一个batch的最后一步和后一个batch的第一步是有联系的
)) model.add(TimeDistributed(Dense(OUTPUT_SIZE))) # dense对每一个output连接,对每一个时间点都要计算 adam = Adam(LR)
model.compile(optimizer = adam,
loss = 'mse',) print('Training ------------')
for step in range(501):
# data shape = (batch_num,steps,inputs/output)
X_batch, Y_batch, xs = get_batch()
cost = model.train_on_batch(X_batch, Y_batch)
pred = model.predict(X_batch,BATCH_SIZE)
plt.plot(xs[0,:], Y_batch[0].flatten(),'r',xs[0,:],pred.flatten()[:TIME_STEPS],'b--')
plt.ylim((-1.2,1.2))
plt.draw()
plt.pause(0.5)
if step % 10 == 0:
print('train cost',cost)

用Keras搭建神经网络 简单模版(五)——RNN LSTM Regressor 循环神经网络的更多相关文章

  1. 用Keras搭建神经网络 简单模版(三)—— CNN 卷积神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...

  2. 用Keras搭建神经网络 简单模版(一)——Regressor 回归

    首先需要下载Keras,可以看到我用的是TensorFlow 的backend 自己构建虚拟数据,x是-1到1之间的数,y为0.5*x+2,可视化出来 # -*- coding: utf-8 -*- ...

  3. 用Keras搭建神经网络 简单模版(六)——Autoencoder 自编码

    import numpy as np np.random.seed(1337) from keras.datasets import mnist from keras.models import Mo ...

  4. 用Keras搭建神经网络 简单模版(四)—— RNN Classifier 循环神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) from keras.datasets import mnist fro ...

  5. 用Keras搭建神经网络 简单模版(二)——Classifier分类(手写数字识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) #for reproducibility再现性 from keras.d ...

  6. TensorFlow系列专题(七):一文综述RNN循环神经网络

    欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 前言 RNN知识结构 简单循环神经网络 RNN的基本结构 RNN的运算过程 ...

  7. keras搭建密集连接网络/卷积网络/循环网络

    输入模式与网络架构间的对应关系: 向量数据:密集连接网络(Dense层) 图像数据:二维卷积神经网络 声音数据(比如波形):一维卷积神经网络(首选)或循环神经网络 文本数据:一维卷积神经网络(首选)或 ...

  8. 大话循环神经网络(RNN)

      在上一篇文章中,介绍了 卷积神经网络(CNN)的算法原理,CNN在图像识别中有着强大.广泛的应用,但有一些场景用CNN却无法得到有效地解决,例如: 语音识别,要按顺序处理每一帧的声音信息,有些结果 ...

  9. RNN循环神经网络学习——概述

    循环神经网络(Recurrent Neural NetWork,RNN)是一种将节点定向连接成环的人工神经网络,其内部状态可以展示动态时序行为. 循环神经网络的主要用途是处理和预测序列数据.循环神经网 ...

随机推荐

  1. 文件格式 rdp

    auto connect:i:1full address:s:公网访问IP地址username:s:Administrator

  2. jquery中prop,attr,data的区别

    这两天翻了jq的源码,今天看到了jq关于数据存储的几个方法,遂总结一下,和小伙伴没分享一下,哪里说的不对,还望批评指正~~~ 废话不多说,直接上代码: $(function(){ $('#div1') ...

  3. 02-命令篇——基础命令&常用命令

    基础命令 docker 启动与停止 启动docker systemctl start docker 停止docker systemctl stop docker 重启docker systemctl ...

  4. mongo operations

    Check Mongo Operate Logs db.getCollection('oplog.rs').find({'ns':{$in:['sxa.sxacc-organizations','sx ...

  5. 003-官网安装openstack之-keystone身份认证服务

    以下操作均在控制节点进行 1.控制节点安装keystone服务 概念理解: Keystone是OpenStack框架中,负责身份验证.服务规则和服务令牌的功能, 它实现了OpenStack的Ident ...

  6. Linux C打印所有的环境变量

    #include <stdio.h> extern char** environ; int main() { ; ; environ[nIndex] != NULL; nIndex++) ...

  7. Codeforces Round #584 E2. Rotate Columns (hard version)

    链接: https://codeforces.com/contest/1209/problem/E2 题意: This is a harder version of the problem. The ...

  8. web开发下载文件夹

    我们平时经常做的是上传文件,上传文件夹与上传文件类似,但也有一些不同之处,这次做了上传文件夹就记录下以备后用.此控件PC全平台支持包括mac,linux系统的文件上传,文章末尾将附上控件下载与教程链接 ...

  9. learning express stpe(三)

    use static resourceL: const express = require('express'); const app = express(); app.use(express.sta ...

  10. bzoj 1996

    区间 dp $f[i][j][1/0]$ 表示将理想数列的 $[i,j]$ 区间排好的方案数 $f[i][j][1]$ 表示最后进去的是第 $i$ 个人 $f[i][j][0]$ 表示最后进去的是第 ...