特征选择

还是回归到房价的问题。在最开始的问题中,我们假设房价与房屋面积有关,那么最开始对房价预测的时候,回归方程可能如下所示:

其中frontage表示的房子的长,depth表示的是房子的宽。

但长和宽显然不是用于预测房价的一个很好的特征,正常的特征应该是房屋面积,那么正常的线性方程应该为:

其中X表示的房屋面积。

所以选择了合适的特征,对算法进行预测和分类是非常有好处的

多项式回归

很多时候,线性回归可能无法很好地拟合实际情况。例如房屋面积与房价之间的关系如下:

很明显,线性回归的方式无法很好地解决这个问题。

那么此时就可以考虑多项式的方式来解决这个问题。

相对来说,这样就可以更加拟合了。

但是有一点问题在于,如果是X的立方,则最后可能会有一个下降的趋势。但是根据实际情况,房价应该是随着房屋面积正增长的。那么最后的方程变为:

为了能到远方,脚下的每一步都不能少

Andrew Ng机器学习算法入门((七):特征选择和多项式回归的更多相关文章

  1. Andrew Ng机器学习算法入门(一):简介

    简介 最近在参加一个利用机器学习来解决安全问题的算法比赛,但是对机器学习的算法一直不了解,所以先了解一下机器学习相关的算法. Andrew Ng就是前段时间从百度离职的吴恩达.关于吴恩达是谁,相信程序 ...

  2. Andrew Ng机器学习算法入门(二):机器学习分类

    机器学习的定义 Arthur Samuel给出的定义,Field of Study that gives computers the ability to learn without being ex ...

  3. Andrew Ng机器学习算法入门(九):逻辑回归

    逻辑回归 先前所讲的线性回归主要是一个预测问题,根据已知的数据去预测接下来的情况.线性回归中的房价的例子就很好地说明了这个问题. 然后在现实世界中,很多问题不是预测问题而是一个分类问题. 如邮件是否为 ...

  4. Andrew Ng机器学习算法入门(三):线性回归算法

    线性回归 线性回归,就是能够用一个直线较为精确地描述数据之间的关系.这样当出现新的数据的时候,就能够预测出一个简单的值. 线性回归中最常见的就是房价的问题.一直存在很多房屋面积和房价的数据,如下图所示 ...

  5. Andrew Ng机器学习算法入门(十):过拟合问题解决方法

    在使用机器学习对训练数据进行学习和分类的时候,会出现欠拟合和过拟合的问题.那么什么是欠拟合和过拟合问题呢?

  6. Andrew Ng机器学习算法入门(八):正规方程

    正规方程 在先学习正规方程之前,先来复习一下之前学过的常规的回归方程的解法. 假设存在如果的代价函数, ,解法也十分的简答. 但是有时候遇到的情况或许会变得相当的复杂. 的数,如果是按照常规的方式进行 ...

  7. Andrew Ng机器学习算法入门((六):多变量线性回归方程求解

    多变量线性回归 之前讨论的都是单变量的情况.例如房价与房屋面积之前的关系,但是实际上,房价除了房屋面积之外,还要房间数,楼层等因素相关.那么此时就变成了一个多变量线性回归的问题.在实际问题中,多变量的 ...

  8. Andrew Ng机器学习算法入门(四):阶梯下降算法

    梯度降级算法简介 之前如果需要求出最佳的线性回归模型,就需要求出代价函数的最小值.在上一篇文章中,求解的问题比较简单,只有一个简单的参数.梯度降级算法就可以用来求出代价函数最小值. 梯度降级算法的在维 ...

  9. Andrew Ng机器学习算法入门((五):矩阵和向量

    矩阵定义 数学上,一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列 使用Aij来获取矩阵中第i行j列的数据 向量的定义 向量就是n行1列的特殊矩阵 由于向量仅仅只有1行,那么通过一个变量i来指定获 ...

随机推荐

  1. 快速查找未打补丁的exp

    在windows DOS窗口下输入以下内容,输出为未打的补丁信息列表 systeminfo>vul.txt&(for %i in (KB977165 KB2160329 KB250366 ...

  2. 迷宫问题(DFS)

    声明:图片及内容基于https://www.bilibili.com/video/BV1oE41177wk?t=3245 问题及分析 8*8的迷宫,最外周是墙,0表示可以走,1表示不可以走 设置迷宫 ...

  3. 60秒定位问题,十倍程序员的Debug日常

    作者:陶建辉 这是我在 2020 年 5 月写的一篇内部博客,当时是希望研发和技术支持同学能够帮助用户快速定位 Bug,解决问题.2020 年 12 月我又迭代了一版,并还针对此进行了内部的培训.这段 ...

  4. 关于HDFS存储元数据的NameNode持久化存储

    NameNode持久化场景引入: 问题:NameNode宕机,导致内存中的文件元数据丢失怎么办?我们知道元数据是存储来内存中的,所以一旦宕机,内存数据是会丢失的,因此为了避免数据丢失,HDFS中出现了 ...

  5. HDFS的上传流程以及windows-idea操作文件上传的注意

    HDFS的上传流程 命令:hdfs dfs -put xxx.wmv /hdfs的文件夹 cd进入到要上传文件的当前目录,再输入hdfs命令上传,注意-put后tab可以自动补全, 最后加上你要上传到 ...

  6. vue-cli3.0 开发环境构建

    vue-cli3.0官网 1.node版本 node版本要求node>=8.9以上(推荐 8.11.0+)使用以下命令查看node版本 node -v 如果不是最新的请到node下载下载最新版本 ...

  7. python3 elf文件解析

    原地址:https://github.com/guanchao/elfParser 作者是用python2写的,现在给出我修改后的python3版本.(测试发现有bug,以后自己写个,0.0) 1 # ...

  8. golang 性能调优分析工具 pprof (上)

    一.golang 程序性能调优 在 golang 程序中,有哪些内容需要调试优化? 一般常规内容: cpu:程序对cpu的使用情况 - 使用时长,占比等 内存:程序对cpu的使用情况 - 使用时长,占 ...

  9. Linux基础之Shell与变量

    一.提出问题 在平时的工作中,我们经常会碰到设置环境的问题,例如将应用的执行路径添加到PATH中,方便程序的执行:在Linux中更多的时候是跟shell打交道,很多通过shell启动的应用或者服务都需 ...

  10. [源码分析] 分布式任务队列 Celery 之 发送Task & AMQP

    [源码分析] 分布式任务队列 Celery 之 发送Task & AMQP 目录 [源码分析] 分布式任务队列 Celery 之 发送Task & AMQP 0x00 摘要 0x01 ...