还是困,不过已经可以用脑子思考问题了

T1 数据恢复

没啥明确的算法,可以说是贪心?

考虑部分分,

链的直接扫,

对于菊花的发现只要根节点在第一个,剩下的点位置不重要

那么按照$a/b$排序,扫一遍就行。

这启发我们正解如何考虑祖先和儿子的关系

我们设$v=\frac{a}{b}$,那么还是贪心的选择$v$最小的最优

考虑父子关系

如果当前最优的点的父亲被选,那么直接选他更优

如果当前最优的点的父亲没选,那么选上他的父亲再选他更优

这样就可以使用并查集维护,每次找到$v$最小的点后把他和他父亲合在一起,

$a,b$也合并,然后把新的节点插进可重集内,并删掉原来的两个点。

关于答案的累加,直接在合并的时候累加一个$a_j*b_i,fa[j]=i$即可。

证明:

考虑$fa[j]=i$,设$j$后面的$a$的和为$sum$,设$i,j$合并后的大点叫$k$

原来这一部分的答案为$ans=b_j*sum+b_i*(a_j+sum)$

合并后若要计算答案为$ans=b_k*sum=b_j*sum+b_i*sum$,发现少了一项$b_i*a_j$

所以直接在合并时加这一项,剩下的那些答案也会在合并这个的时候被统计,所以直接加这个是正确的。

 1 #include<bits/stdc++.h>
2 #define int long long
3 using namespace std;
4 namespace AE86{
5 inline int read(){
6 int x=0,f=1;char ch=getchar();
7 while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
8 while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}return x*f;
9 }inline void write(int x,char opt='\n'){
10 char ch[20];int len=0;if(x<0)x=~x+1,putchar('-');
11 do{ch[len++]=x%10+(1<<5)+(1<<4);x/=10;}while(x);
12 for(register int i=len-1;i>=0;--i)putchar(ch[i]);putchar(opt);}
13 }using namespace AE86;
14 const int NN=3e5+5;
15 int n,fa[NN],ans,f[NN],a[NN],b[NN];
16 bool vis[NN];
17 struct SNOW{
18 double v; int id; SNOW(){}
19 SNOW(double v,int id):v(v),id(id){}
20 bool operator<(const SNOW&x)const{
21 if(v==x.v) return id<x.id;
22 return v<x.v;
23 }
24 };multiset<SNOW> s;
25 inline int getfa(int x){return fa[x]=(fa[x]==x?x:getfa(fa[x]));}
26 inline void merge(int i,int j){//j向i合并
27 i=getfa(i); j=getfa(j);
28 if(i==j) return;
29 ans+=a[j]*b[i];
30 a[i]+=a[j];a[j]=0;
31 b[i]+=b[j];b[j]=0;
32 fa[j]=i;
33 }
34 namespace WSN{
35 inline short main(){
36 freopen("data.in","r",stdin);
37 freopen("data.out","w",stdout);
38 n=read();for(int i=2;i<=n;i++) f[i]=read();
39 vis[0]=1;
40 for(int i=1;i<=n;i++) fa[i]=i;
41 for(int i=1;i<=n;i++)
42 a[i]=read(),b[i]=read(),s.insert(SNOW(b[i]?1.0*a[i]/b[i]:0,i));
43 while(s.size()){
44 auto it=s.begin(); s.erase(it);
45 int ff=f[it->id],f2=getfa(ff);
46 vis[it->id]=1;
47 if(vis[f2]) merge(f2,it->id);
48 else{
49 s.erase(s.find(SNOW(1.0*a[f2]/b[f2],f2)));
50 merge(f2,it->id);
51 s.insert(SNOW(1.0*a[f2]/b[f2],f2));
52 }
53 }
54 write(ans);
55 return 0;
56 }
57 }
58 signed main(){return WSN::main();}

T2 下落的小球

考虑设$siz_i$表示子树大小,$w_i$表示$i$子树内叶子节点的$\sum a$,$r_i=w_i-siz_i$

那么这个$r_i$就是这颗子树可以让他的上面的那一条链掉球的数量。

那么直接对于$r$和$siz$做可重集排列就行。

 1 #include<bits/stdc++.h>
2 #define int long long
3 using namespace std;
4 namespace AE86{
5 inline int read(){
6 int x=0,f=1;char ch=getchar();
7 while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
8 while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}return x*f;
9 }inline void write(int x,char opt='\n'){
10 char ch[20];int len=0;if(x<0)x=~x+1,putchar('-');
11 do{ch[len++]=x%10+(1<<5)+(1<<4);x/=10;}while(x);
12 for(register int i=len-1;i>=0;--i)putchar(ch[i]);putchar(opt);}
13 }using namespace AE86;
14 const int NN=1e6+5,mod=1e9+7;
15 int n,fa[NN],h[NN],v[NN],w[NN],ans=1;
16 struct SNOW{int to,next;}e[NN<<1]; int head[NN],rp;
17 inline void add(int x,int y){e[++rp]=(SNOW){y,head[x]};head[x]=rp;}
18 inline int qmo(int a,int b,int ans=1){
19 int c=mod; a%=c;for(;b;b>>=1,a=a*a%c) if(b&1) ans=ans*a%c;
20 return ans;
21 }
22 inline void pre(){
23 h[0]=h[1]=1; v[0]=v[1]=1;
24 for(int i=2;i<NN;i++) h[i]=h[i-1]*i%mod;
25 v[NN-1]=qmo(h[NN-1],mod-2);
26 for(int i=NN-2;i>=2;i--) v[i]=v[i+1]*(i+1)%mod;
27 }
28 int siz[NN];
29 inline void dfs(int x){
30 siz[x]=1;int s1=0,s2=0;
31 for(int i=head[x];i;i=e[i].next){
32 int y=e[i].to; dfs(y);
33 siz[x]+=siz[y]; w[x]+=w[y];
34 s1+=w[y]-siz[y]; s2+=siz[y];
35 if(w[y]>=siz[y]) ans=ans*v[w[y]-siz[y]]%mod*v[siz[y]]%mod;
36 } if(w[x]<siz[x]) ans=0;
37 if(s1>0&&s2>0) ans=ans*h[s1]%mod*h[s2]%mod;
38 }
39 namespace WSN{
40 inline short main(){
41 freopen("ball.in","r",stdin);
42 freopen("ball.out","w",stdout);
43 n=read(); pre();
44 for(int i=2,a;i<=n;i++) a=read(),add(a,i);
45 for(int i=1;i<=n;i++) w[i]=read(); dfs(1);
46 write(ans);
47 return 0;
48 }
49 }
50 signed main(){return WSN::main();}

T3 消失的字符串

咕咕咕,只会$k=0$

T4 古老的序列问题

$n<=2000$预处理前缀和表示从$i$到$j$的$\sum \sum cost(i,j)$

然后每次询问$O(n^2)$

单调不降部分分,$\sum \sum a_l*a_r$,拆柿子预处理前缀和就行

然后不会了

 1 #include<bits/stdc++.h>
2 #define int long long
3 using namespace std;
4 namespace AE86{
5 inline int read(){
6 int x=0,f=1;char ch=getchar();
7 while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
8 while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}return x*f;
9 }inline void write(int x,char opt='\n'){
10 char ch[20];int len=0;if(x<0)x=~x+1,putchar('-');
11 do{ch[len++]=x%10+(1<<5)+(1<<4);x/=10;}while(x);
12 for(int i=len-1;i>=0;--i)putchar(ch[i]);putchar(opt);}
13 }using namespace AE86;
14 const int NN=1e5+5,mod=1e9+7;
15 int n,m,s[NN],L,R,ans;
16 int sm[2005][2005];
17 inline void task1(){
18 for(int i=1;i<=n;i++){
19 int mn=0x3fffffff,mx=0;
20 for(int j=i;j<=n;j++){
21 mn=min(mn,s[j]);mx=max(mx,s[j]);
22 sm[i][j]=(sm[i][j-1]+mn*mx%mod)%mod;
23 }
24 }
25 while(m--){
26 L=read(),R=read(),ans=0;
27 for(int i=L;i<=R;i++) ans=(ans+sm[i][R])%mod;
28 write(ans);
29 }
30 }
31 int tmp,sum[NN],S[NN];
32 inline void task2(){
33 for(int i=1;i<=n;i++) sum[i]=(sum[i-1]+s[i])%mod;
34 for(int i=1;i<=n;i++) S[i]=(S[i-1]+s[i]*sum[i-1]%mod)%mod;
35 while(m--){
36 L=read(),R=read(),ans=0;
37 ans=(sum[R]*(sum[R]-sum[L-1]+mod)%mod-(S[R]-S[L-1]+mod)%mod+mod)%mod;
38 write(ans);
39 }
40 }
41 namespace WSN{
42 inline short main(){
43 freopen("sequence.in","r",stdin);
44 freopen("sequence.out","w",stdout);
45 n=read(); m=read();
46 for(int i=1;i<=n;i++) s[i]=read();
47 if(n<=2000) return task1(),0;
48 for(int i=2;i<=n;i++) if(s[i]-s[i-1]>=0) ++tmp;
49 if(tmp==n-1) return task2(),0;
50 return 0;
51 }
52 }
53 signed main(){return WSN::main();}

30

花了一节课大概听懂了战神做法,过于弱了。。。

Noip模拟67 2021.10.3的更多相关文章

  1. Noip模拟70 2021.10.6

    T1 暴雨 放在第一道的神仙题,不同的做法,吊人有的都在用线段树维护$set$预处理 我是直接$dp$的,可能代码的复杂度比那种的稍微小一点 设$f[i][j][p][0/1]$表示考虑了前$i$列, ...

  2. Noip模拟69 2021.10.5

    考场拼命$yy$高精度结果没学好$for$循环痛失$50pts$,当场枯死 以后一定打对拍,要不考后会... T1 石子游戏 首先要知道典型的$NIM$博弈,就是说如果所有堆石子个数的异或和为$0$则 ...

  3. Noip模拟76 2021.10.14

    T1 洛希极限 上来一道大数据结构或者单调队列优化$dp$ 真就没分析出来正解复杂度 正解复杂度$O(q+nm)$,但是据说我的复杂度是假的 考虑一个点转移最优情况是从它上面的一个反$L$形转移过来 ...

  4. Noip模拟81 2021.10.20

    T1 语言 比较简单的题,然后就瞎写了,所以考场上就我一个写了线段树的,所以我的常数.... 所以就枚举动词的位置,找前面后面有没有出现$4$即可 1 #include<bits/stdc++. ...

  5. Noip模拟83 2021.10.26

    T1 树上的数 有手就能在衡中$OJ$上过,但是$WaitingCoders$不行,就是这样 必须使用$O(n)$算法加上大力卡常,思路就是找子树内没更新的更新,更新过了直接$return$ 1 #i ...

  6. Noip模拟80 2021.10.18

    预计得分:5 实际得分:140?????????????? T1 邻面合并 我考场上没切掉的大水题....(证明我旁边的cty切掉了,并觉得很水) 然而贪心拿了六十,离谱,成功做到上一篇博客说的有勇气 ...

  7. Noip模拟79 2021.10.17(题目名字一样)

    T1 F 缩点缩成个$DAG$,然后根据每个点的度数计算期望值 1 #include<cstdio> 2 #include<cstring> 3 #include<vec ...

  8. Noip模拟78 2021.10.16

    这次时间分配还是非常合理的,但可惜的是$T4$没开$\textit{long long}$挂了$20$ 但是$Arbiter$上赏了蒟蒻$20$分,就非常不错~~~ T1 F 直接拿暴力水就可以过,数 ...

  9. Noip模拟77 2021.10.15

    T1 最大或 $T1$因为没有开$1ll$右移给炸掉了,调了一年不知道为啥,最后实在不懂了 换成$pow$就过掉了,但是考场上这题耽误了太多时间,后面的题也就没办法好好打了.... 以后一定要注意右移 ...

随机推荐

  1. 斐波那契数(Java)

    斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 .该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0,F(1) = 1 F(n) = F(n ...

  2. HCNP Routing&Switching之IS-IS邻居建立、LSDB同步、拓扑计算和路由形成

    前文我们了解了IS-IS的报文结构和类型相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15260670.html:今天我们来聊一聊IS-IS建立邻居. ...

  3. 解决sofaboot项目右键入口方法没有run sofa application

    选中入口方法名,右键出现run sofa application

  4. 基于Tensorflow + Opencv 实现CNN自定义图像分类

    摘要:本篇文章主要通过Tensorflow+Opencv实现CNN自定义图像分类案例,它能解决我们现实论文或实践中的图像分类问题,并与机器学习的图像分类算法进行对比实验. 本文分享自华为云社区< ...

  5. 在PHP中灵活使用foreach+list处理多维数组

    先抛出问题,有时候我们接收到的参数是多维数组,我们需要将他们转成普通的数组,比如: $arr = [ [1, 2, [3, 4]], [5, 6, [7, 8]], ]; 我们需要的结果是元素1变成1 ...

  6. mysql数据库备份参数

    我用来实现自动全备份的脚本(可以满足一般有前后版本兼容要求的导出导入操作,我的字符集是latin1): mysqldump.exe -umyusername -pmypass -h localhost ...

  7. Docker系列(15)- Commit镜像

    docker commit 提交容器成为一个新的副本,有点像套娃 # 命令和git原理类似 docker commit -m="提交的描述信息" -a="作者" ...

  8. Jmeter系列(26)- 常用逻辑控制器(5) | 循环控制器Loop Controller

    循环控制器(Loop Controller) 字面意思,循环该控制器下的请求 设定固定循环次数,或者一直循环 同线程组的循环是父子关系,大家可以试下,如果线程组设置了一直循环,而循环控制器设置了2次, ...

  9. 博客主题-Next风格

    适配方法 下载压缩包,按照文件名将内容复制粘贴到对应框中即可. 注意事项 请将主题设置为custom 禁用默认css 下载连接 Next.rar version:2020-07-10 next.rar ...

  10. iPhone发布内测程序的方法

    iPhone是封闭系统,不像android手机可以自行安装apk,所以iPhone手机发布内测程序相对来说复杂一些. 越狱安装 如果测试用户的机器已经越狱,那就简单了,直接打包成ipa,用户直接通过9 ...