考场

后两题是原题,教练说不用写了(ycx 不讲武德)

T1 先手模了 \(n\le5\) 的情况,尝试找规律失败。那就只能 DP 了,最终没搞出来。

记忆化搜索打了 \(n\le20\) 的表,交了

res

30pts

少模了,爆了 20pts。。。

rk1 赵思远 100+81+45

rk4 ys 30+72+65

玩具

具体做法可以看hzoi巨佬的博客(虽然有锅)

这里补充一下细节和如何想到。(下文中高度 = 深度,按边数计)

显然题意为求 \(n\) 个点的树树高期望

一个 naive 的想法设状态为 \(f[i,j]\) 表示 \(i\) 个点的树树高为 \(j\) 的概率,但直接转移需要知道每个深度度有多少个点,显然不行。那么考虑有若干个树加一个根拼起来,设 \(g[i,j]\) 为 \(i\) 个点的森林深度为 \(j\) 的概率,那么 \(f[i,j]=g[i-1,j-1]\),问题转化为求 \(g\)。

考虑枚举第一棵树中有多少点,那么可以由第一棵树+其他点的森林转移而来,但这样还要枚举深度,于是转换第二维为树高小于等于 \(j\) 的概率,\(g[i,j]=\sum_{k=1}^if[k,j]\times g[i-k,j]\),这样还少了一部分,即第一棵树有 \(k\) 个点的概率,设为 \(dp\),应再乘上 \(dp[i,k]\)。

最后的问题就是求 \(dp\),对于第 \(i\) 个点,它有 \(i\) 种选择(接在前 \(i-1\) 个点后或新开一棵树),则有 \(dp[i,j]=dp[i-1,j-1]\times\frac{j-1}i+dp[i-1,j]\times\frac{i-j}i\)

带注释的 code
const int N = 205;
int n,mod; LL ans,inv[N],dp[N][N],f[N][N],g[N][N]; LL Pow(LL x,LL y)
{ LL res=1; for(;y;y>>=1,x=x*x%mod)if(y&1)res=res*x%mod; return res; } signed main() {
read(n,mod);
For(i,1,n) inv[i] = Pow(i,mod-2);
dp[1][1] = 1;
For(i,2,n) For(j,1,i)
dp[i][j] = (dp[i-1][j-1]*(j-1) + dp[i-1][j]*(i-j))%mod*inv[i]%mod;
f[1][0] = 1; // 单点的深度为0
For(i,0,n) g[0][i] = 1;
For(i,1,n) For(j,0,n) { // j要循环到n,因为g[i][j]=1(j>i)
if( j ) f[i][j] = g[i-1][j-1];
For(k,1,i) g[i][j] = (g[i][j] + dp[i][k]*f[k][j]%mod*g[i-k][j]) %mod;
}
For(i,1,n) ans = (ans + (f[n][i]-f[n][i-1])*i) %mod;
// f[n,i]-f[n,i-1]得到深度为i的概率
write((ans%mod+mod)%mod);
return iocl();
}

y

状压 DP + meet in the middle

bitset
const int N = 95;
int n,m,d;
bitset<N> w[2][N]; int l,ans;
bitset<N> f[1<<12],g[1<<12];
// f[s][i]:从1开始路径为s到i的合法性; g:从2..n开始 signed main() {
read(n,m,d); l = d/2;
For(i,1,m) {
int x,y,z; read(x,y,z);
w[z][x][y] = w[z][y][x] = 1;
}
f[1][1] = 1;
For(i,2,n) g[1][i] = 1;
for(int i = 1; i < 1<<l; ++i)
For(j,1,n) if( f[i][j] ) f[i<<1] |= w[0][j], f[i<<1|1] |= w[1][j];
for(int i = 1; i < 1<<d-l; ++i)
For(j,1,n) if( g[i][j] ) g[i<<1] |= w[0][j], g[i<<1|1] |= w[1][j];
for(int i = 1<<l; i < 1<<l+1; ++i) for(int j = 1<<d-l; j < 1<<d-l+1; ++j)
For(k,1,n) if( f[i][k] && g[j][k] ) { ++ans; break; }
write(ans);
return iocl();
}

z

先咕了

upd 20210902:

核心:离线,按长度递减的顺序处理询问,同时删除位移绝对值比 \(l\) 小的任务。

代码极其恶心,抄写的我身心俱疲。

带注释的 code
typedef pair<LL,LL> PLL;

const int N = 1e5+5;
int n,q,x[N];
PII l[N]; int m;
LL ans[N]; // ans[0]: l=0的答案
priority_queue<PLL,vector<PLL>,greater<PLL>> pq;
map<LL,LL> mp; LL calc(LL l) { return ans[0] - (mp.size()-(!mp.empty()&&mp.begin()->se<0)) * l; }
// l<min{x}: 直接算答案(每次可以减少移动距离l,但第一个任务需要向左时不能) signed main() {
// freopen("a.in","r",stdin);
// freopen("a.out","w",stdout);
read(n,q);
For(i,1,n, lst=0) {
int y; read(y); if( y == lst ) continue;
if( m && ((x[m]<0&&y<lst) || (x[m]>0&&y>lst)) ) x[m] += y-lst;
else x[++m] = y-lst;
lst = y;
} // x转化为位移
For(i,1,q) read(l[i].fi), l[i].se = i; sort(l+1,l+q+1);
For(i,1,m) {
ans[0] += abs(x[i]), mp[i] = x[i];
pq.push(MP(abs(x[i]),i));
}
LL t = 1;
while( !pq.empty() ) {
PII u = pq.top(); pq.pop(); auto it = mp.lower_bound(u.se);
if( it == mp.end() || it->fi != u.se || abs(it->se) != u.fi ) continue;
while( t<=q && abs(it->se) > l[t].fi ) ans[l[t].se] = calc(l[t].fi), ++t;
// 剩余的l都比最小位移绝对值大,尝试删除
if( it != mp.begin() ) {
if( it != prev(mp.end()) ) { // 三合一
auto pre = prev(it), suf = next(it);
ans[0] -= abs(it->se) + abs(pre->se) + abs(suf->se);
it->se += pre->se + suf->se;
ans[0] += abs(it->se);
pq.push(MP(abs(it->se),u.se)), mp.erase(pre), mp.erase(suf);
} else ans[0] -= abs(it->se), mp.erase(it);
} else {
if( it->se > 0 ) { // 向右时可以被l顺便覆盖
if( it != prev(mp.end()) ) { // 二合一
auto suf = next(it);
ans[0] -= abs(it->se) + abs(suf->se);
it->se += suf->se;
if( it->se ) {
ans[0] += abs(it->se);
pq.push(MP(abs(it->se),u.se));
} else mp.erase(it);
mp.erase(suf);
} else ans[0] -= abs(it->se), mp.erase(it);
}
}
}
while( t<=q ) ans[l[t].se] = calc(l[t].fi), ++t;
For(i,1,q) write(ans[i]);
return iocl();
}

20210719 noip20的更多相关文章

  1. 「 题解」NOIP2021模拟赛(2021-07-19)

    小兔的话 欢迎大家在评论区留言哦~ D - 矩阵 简单题意 一个 \(i * i\) 的 \(01\) 矩阵,若满足 每一行 和 每一列 都满足 恰好 有 \(2\) 个位置是 \(1\) 时,称为 ...

  2. noip20

    T1 首先,这个插球,就是森林中连点,考虑dp,我们设 \(dp_{i,j}\) 表示有i个点的森林,有j个点在第一颗树中的概率,转移时考虑第i个点是否在第一颗子树里,转移方程: \[dp_{i,j} ...

  3. 调用免费API查询全年工作日、周末、法定节假日、节假日调休补班数据

    前言 日常开发中,难免会用到判断今天是工作日.周末.法定节假日.节假日调休补班做一些业务处理,例如:仅在上班时间给用户推送消息.本文记录调用免费API查询全年工作日.周末.法定节假日.节假日调休补班数 ...

  4. AspNetCore&MassTransit Courier实现分布式事务

    在之前的一篇博文中,CAP框架可以方便我们实现非实时.异步场景下的最终一致性,而有些用例总是无法避免的需要在实时.同步场景下进行,可以借助Saga事务来解决这一困扰.在一些博文和仓库中也搜寻到了.Ne ...

  5. 从零学习SpringSecurity

    一.简介 SpringSecurity是一个功能强大且高度可定制的身份验证和访问控制框架,和spring项目整合更加方便. 二.核心功能 认证(Authentication):指的是验证某个用户能否访 ...

  6. 日常shell练习

    2021-07-19 1.echo的使用 1.1 echo -n 表示不换行输出 # echo输出会自动换行,换行输出两个1 echo 1 echo 1 # 不换行输出,不换行输出两个1 echo - ...

  7. 2021record

    2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...

  8. 基于Spring MVC + Spring + MyBatis的【超市会员管理系统】

    资源下载: https://download.csdn.net/download/weixin_44893902/22035329 一. 语言和环境 实现语言:JAVA语言. 使用:MyEclipse ...

  9. 基于Java swing+mysql+eclipse的【水电费管理系统】

    本项目为前几天收费帮学妹做的一个项目,Java swing项目,在工作环境中基本使用不到,但是很多学校把这个当做编程入门的项目来做,故分享出本项目供初学者参考. CSDN9.9赞助下载: https: ...

随机推荐

  1. 浅谈Java类中的变量初始化顺序

    一.变量与构造器的初始化顺序 我们知道一个类中具有类变量.类方法和构造器(方法中的局部变量不讨论,他们是在方法调用时才被初始化),当我们初始化创建一个类对象时,其初始化的顺序为:先初始化类变量,再执行 ...

  2. 创建函数function

    1.创建普通函数 function 函数名称(){ 函数体://封装的代码 } 函数名称()://调用函数 function getSum(){ for(var i=1,sum=0;i<=100 ...

  3. JavaGUI画笔工具的使用

    JavaGUI画笔工具的使用 package GUI; import java.awt.*; public class TestPaint { public static void main(Stri ...

  4. Linux文件系统与日志文件

    目录 一.inode和block 1.1.inode和block概述 1.2.inode的内容 inode包含文件的元信息: 查看inode号两种方式 目录文件的结构 1.3.inode的号码 用户通 ...

  5. MOOC大学计算机课程推荐

    转自:https://zhuanlan.zhihu.com/p/30659834  这个是大佬总结的, 大学计算机课程 以下课程是我在MOOC上找到的所有我认为讲的好的. 主要是中国大学MOOC,学堂 ...

  6. MySQL-18-MHA+Atlas读写分离架构

    Atlas介绍 Atlas是由Qihoo 360 Web平台部基础架构团队开发维护的一个基于MySQL协议的数据中间层项目 它是在mysql-proxy 0.8.2版本的基础上,对其进行了优化,增加了 ...

  7. 【笔记】多项式回归的思想以及在sklearn中使用多项式回归和pipeline

    多项式回归以及在sklearn中使用多项式回归和pipeline 多项式回归 线性回归法有一个很大的局限性,就是假设数据背后是存在线性关系的,但是实际上,具有线性关系的数据集是相对来说比较少的,更多时 ...

  8. JVM学习笔记之class文件结构【七】

    一.概念 1.1 无符号数: 以 u1.u2.u3.u4.u8 代表 1 个字节,2 个字节.4 个字节.8 个字节的无符号数.无符号数可以描述数字,索引引用.数量值和按照 UTF-8 编码构成的字符 ...

  9. CentOS8 安装MySQL5.7

    CentOS_8 安装MySQL5.7 1.在安装之前,如果你的系统曾经安装过Mariadb,请先卸载:yum remove mariadb*2.安装依赖 yum install -y epel-re ...

  10. @Profile-根据不同环境注入bean

    介绍 @Profile元注解是在不同的生产环境中,@Bean创建的SpringBean根据spring.profiles.active指定的环境不同创建不同环境的bean对象 一.@Profile元注 ...