英文:https://arpitbhayani.me/blogs/function-overloading

作者:arprit

译者:豌豆花下猫(“Python猫”公众号作者)

声明:本翻译是出于交流学习的目的,基于 CC BY-NC-SA 4.0 授权协议。为便于阅读,内容略有改动。

函数重载指的是有多个同名的函数,但是它们的签名或实现却不同。当调用一个重载函数 fn 时,程序会检验传递给函数的实参/形参,并据此而调用相应的实现。

int area(int length, int breadth) {
return length * breadth;
} float area(int radius) {
return 3.14 * radius * radius;
}

在以上例子中(用 c++ 编写),函数 area 被重载了两个实现。第一个函数接收两个参数(都是整数),表示矩形的长度和宽度,并返回矩形的面积。另一个函数只接收一个整型参数,表示圆的半径。

当我们像 area(7) 这样调用函数 area 时,它会调用第二个函数,而 area(3,4) 则会调用第一个函数。

为什么 Python 中没有函数重载?

Python 不支持函数重载。当我们定义了多个同名的函数时,后面的函数总是会覆盖前面的函数,因此,在一个命名空间中,每个函数名仅会有一个登记项(entry)。

Python猫注:这里说 Python 不支持函数重载,指的是在不用语法糖的情况下。使用 functools 库的 singledispatch 装饰器,Python 也可以实现函数重载。原文作者在文末的注释中专门提到了这一点。

通过调用 locals() 和 globals() 函数,我们可以看到 Python 的命名空间中有什么,它们分别返回局部和全局命名空间。

def area(radius):
return 3.14 * radius ** 2 >>> locals()
{
...
'area': <function area at 0x10476a440>,
...
}

在定义一个函数后,接着调用 locals() 函数,我们会看到它返回了一个字典,包含了定义在局部命名空间中的所有变量。字典的键是变量的名称,值是该变量的引用/值。

当程序在运行时,若遇到另一个同名函数,它就会更新局部命名空间中的登记项,从而消除两个函数共存的可能性。因此 Python 不支持函数重载。这是在创造语言时做出的设计决策,但这并不妨碍我们实现它,所以,让我们来重载一些函数吧。

在 Python 中实现函数重载

我们已经知道 Python 是如何管理命名空间的,如果想要实现函数重载,就需要这样做:

  • 维护一个虚拟的命名空间,在其中管理函数定义
  • 根据每次传递的参数,设法调用适当的函数

为了简单起见,我们在实现函数重载时,通过不同的参数数量来区分同名函数。

把函数封装起来

我们创建了一个名为Function的类,它可以封装任何函数,并通过重写的__call__方法来调用该函数,还提供了一个名为key的方法,该方法返回一个元组,使该函数在整个代码库中是唯一的。

from inspect import getfullargspec

class Function(object):
"""Function类是对标准的Python函数的封装"""
def __init__(self, fn):
self.fn = fn def __call__(self, *args, **kwargs):
"""当像函数一样被调用时,它就会调用被封装的函数,并返回该函数的返回值"""
return self.fn(*args, **kwargs) def key(self, args=None):
"""返回一个key,能唯一标识出一个函数(即便是被重载的)"""
# 如果不指定args,则从函数的定义中提取参数
if args is None:
args = getfullargspec(self.fn).args return tuple([
self.fn.__module__,
self.fn.__class__,
self.fn.__name__,
len(args or []),
])

在上面的代码片段中,key函数返回一个元组,该元组唯一标识了代码库中的函数,并且记录了:

  • 函数所属的模块
  • 函数所属的类
  • 函数名
  • 函数接收的参数量

被重写的__call__方法会调用被封装的函数,并返回计算的值(这没有啥特别的)。这使得Function的实例可以像函数一样被调用,并且它的行为与被封装的函数完全一样。

def area(l, b):
return l * b >>> func = Function(area)
>>> func.key()
('__main__', <class 'function'>, 'area', 2)
>>> func(3, 4)
12

在上面的例子中,函数area被封装在Function中,并被实例化成func。key() 返回一个元组,其第一个元素是模块名__main__,第二个是类<class 'function'>,第三个是函数名area,而第四个则是该函数接收的参数数量,即 2。

这个示例还显示出,我们可以像调用普通的 area函数一样,去调用实例 func,当传入参数 3 和 4时,得到的结果是 12,这正是调用 area(3,4) 时会得到的结果。当我们接下来运用装饰器时,这种行为将会派上用场。

构建虚拟的命名空间

我们要创建一个虚拟的命名空间,用于存储在定义阶段收集的所有函数。

由于只有一个命名空间/注册表,我们创建了一个单例类,并把函数保存在字典中。该字典的键不是函数名,而是我们从 key 函数中得到的元组,该元组包含的元素能唯一标识出一个函数。

通过这样,我们就能在注册表中保存所有的函数,即使它们有相同的名称(但不同的参数),从而实现函数重载。

class Namespace(object):
"""Namespace是一个单例类,负责保存所有的函数"""
__instance = None def __init__(self):
if self.__instance is None:
self.function_map = dict()
Namespace.__instance = self
else:
raise Exception("cannot instantiate a virtual Namespace again") @staticmethod
def get_instance():
if Namespace.__instance is None:
Namespace()
return Namespace.__instance def register(self, fn):
"""在虚拟的命名空间中注册函数,并返回Function类的可调用实例"""
func = Function(fn)
self.function_map[func.key()] = fn
return func

Namespace类有一个register方法,该方法将函数 fn 作为参数,为其创建一个唯一的键,并将函数存储在字典中,最后返回封装了 fn 的Function的实例。这意味着 register 函数的返回值也是可调用的,并且(到目前为止)它的行为与被封装的函数 fn 完全相同。

def area(l, b):
return l * b >>> namespace = Namespace.get_instance()
>>> func = namespace.register(area)
>>> func(3, 4)
12

使用装饰器作为钩子

既然已经定义了一个能够注册函数的虚拟命名空间,那么,我们还需要一个钩子来在函数定义期间调用它。在这里,我们会使用 Python 装饰器。

在 Python 中,装饰器用于封装一个函数,并允许我们在不修改该函数的结构的情况下,向其添加新功能。装饰器把被装饰的函数 fn 作为参数,并返回一个新的函数,用于实际的调用。新的函数会接收原始函数的 args 和 kwargs,并返回最终的值。

以下是一个装饰器的示例,演示了如何给函数添加计时功能。

import time

def my_decorator(fn):
"""这是一个自定义的函数,可以装饰任何函数,并打印其执行过程的耗时"""
def wrapper_function(*args, **kwargs):
start_time = time.time()
# 调用被装饰的函数,并获取其返回值
value = fn(*args, **kwargs)
print("the function execution took:", time.time() - start_time, "seconds")
# 返回被装饰的函数的调用结果
return value
return wrapper_function @my_decorator
def area(l, b):
return l * b >>> area(3, 4)
the function execution took: 9.5367431640625e-07 seconds
12

在上面的例子中,我们定义了一个名为 my_decorator 的装饰器,它封装了函数 area,并在标准输出上打印出执行 area 所需的时间。

每当解释器遇到一个函数定义时,就会调用装饰器函数 my_decorator(用它封装被装饰的函数,并将封装后的函数存储在 Python 的局部或全局命名空间中),对于我们来说,它是在虚拟命名空间中注册函数的理想钩子。

因此,我们创建了名为overload的装饰器,它能在虚拟命名空间中注册函数,并返回一个可调用对象。

def overload(fn):
"""用于封装函数,并返回Function类的一个可调用对象"""
return Namespace.get_instance().register(fn)

overload装饰器借助命名空间的 .register() 函数,返回 Function 的一个实例。现在,无论何时调用函数(被 overload 装饰的),它都会调用由 .register() 函数所返回的函数——Function 的一个实例,其 call 方法会在调用期间使用指定的 args 和 kwargs 执行。

现在剩下的就是在 Function 类中实现__call__方法,使得它能根据调用期间传入的参数而调用相应的函数。

从命名空间中找到正确的函数

想要区别出不同的函数,除了通常的模块、类和函数名以外,还可以依据函数的参数数量,因此,我们在虚拟的命名空间中定义了一个 get 方法,它会从 Python 的命名空间中读取待区分的函数以及实参,最后依据参数的不同,返回出正确的函数。我们没有更改 Python 的默认行为,因此在原生的命名空间中,同名的函数只有一个。

这个 get 函数决定了会调用函数的哪个实现(如果重载了的话)。找到正确的函数的过程非常简单——先使用 key 方法,它利用函数和参数来创建出唯一的键(正如注册时所做的那样),接着查找这个键是否存在于函数注册表中;如果存在,则获取其映射的实现。

def get(self, fn, *args):
"""从虚拟命名空间中返回匹配到的函数,如果没找到匹配,则返回None"""
func = Function(fn)
return self.function_map.get(func.key(args=args))

get 函数创建了 Function 类的一个实例,这样就可以复用类的 key 函数来获得一个唯一的键,而不用再写创建键的逻辑。然后,这个键将用于从函数注册表中获取正确的函数。

实现函数的调用

前面说过,每次调用被 overload 装饰的函数时,都会调用 Function 类中的__call__方法。我们需要让__call__方法从命名空间的 get 函数中,获取出正确的函数,并调用之。

__call__方法的实现如下:

def __call__(self, *args, **kwargs):
"""重写能让类的实例变可调用对象的__call__方法"""
# 依据参数,从虚拟命名空间中获取将要调用的函数
fn = Namespace.get_instance().get(self.fn, *args)
if not fn:
raise Exception("no matching function found.")
# 调用被封装的函数,并返回调用的结果
return fn(*args, **kwargs)

该方法从虚拟命名空间中获取正确的函数,如果没有找到任何函数,它就抛出一个 Exception,如果找到了,就会调用该函数,并返回调用的结果。

运用函数重载

准备好所有代码后,我们定义了两个名为 area 的函数:一个计算矩形的面积,另一个计算圆的面积。下面定义了两个函数,并使用overload装饰器进行装饰。

@overload
def area(l, b):
return l * b @overload
def area(r):
import math
return math.pi * r ** 2 >>> area(3, 4)
12
>>> area(7)
153.93804002589985

当我们用一个参数调用 area 时,它返回了一个圆的面积,当我们传递两个参数时,它会调用计算矩形面积的函数,从而实现了函数 area 的重载。

原作者注:从 Python 3.4 开始,Python 的 functools.singledispatch 支持函数重载。从 Python 3.8 开始,functools.singledispatchmethod 支持重载类和实例方法。感谢 Harry Percival 的指正。

总结

Python 不支持函数重载,但是通过使用它的基本结构,我们捣鼓了一个解决方案。

我们使用装饰器和虚拟的命名空间来重载函数,并使用参数的数量作为区别函数的因素。我们还可以根据参数的类型(在装饰器中定义)来区别函数——即重载那些参数数量相同但参数类型不同的函数。

重载能做到什么程度,这仅仅受限于getfullargspec函数和我们的想象。使用前文的思路,你可能会实现出一个更整洁、更干净、更高效的方法,所以,请尝试实现一下吧。

正文到此结束。以下附上完整的代码:

# 模块:overload.py
from inspect import getfullargspec class Function(object):
  """Function is a wrap over standard python function
  An instance of this Function class is also callable
  just like the python function that it wrapped.
  When the instance is "called" like a function it fetches
  the function to be invoked from the virtual namespace and then
  invokes the same.
  """
  def __init__(self, fn):
    self.fn = fn
  
  def __call__(self, *args, **kwargs):
    """Overriding the __call__ function which makes the
    instance callable.
    """
    # fetching the function to be invoked from the virtual namespace
    # through the arguments.
    fn = Namespace.get_instance().get(self.fn, *args)
    if not fn:
      raise Exception("no matching function found.")
    # invoking the wrapped function and returning the value.
    return fn(*args, **kwargs)   def key(self, args=None):
    """Returns the key that will uniquely identifies
    a function (even when it is overloaded).
    """
    if args is None:
      args = getfullargspec(self.fn).args
    return tuple([
      self.fn.__module__,
      self.fn.__class__,
      self.fn.__name__,
      len(args or []),
    ]) class Namespace(object):
  """Namespace is the singleton class that is responsible
  for holding all the functions.
  """
  __instance = None   def __init__(self):
    if self.__instance is None:
      self.function_map = dict()
      Namespace.__instance = self
    else:
      raise Exception("cannot instantiate Namespace again.")   @staticmethod
  def get_instance():
    if Namespace.__instance is None:
      Namespace()
    return Namespace.__instance   def register(self, fn):
    """registers the function in the virtual namespace and returns
    an instance of callable Function that wraps the function fn.
    """
    func = Function(fn)
    specs = getfullargspec(fn)
    self.function_map[func.key()] = fn
    return func
  
  def get(self, fn, *args):
    """get returns the matching function from the virtual namespace.
    return None if it did not fund any matching function.
    """
    func = Function(fn)
    return self.function_map.get(func.key(args=args)) def overload(fn):
  """overload is the decorator that wraps the function
  and returns a callable object of type Function.
  """
  return Namespace.get_instance().register(fn)

最后,演示代码如下:

from overload import overload

@overload
def area(length, breadth):
  return length * breadth @overload
def area(radius):
  import math
  return math.pi * radius ** 2 @overload
def area(length, breadth, height):
  return 2 * (length * breadth + breadth * height + height * length) @overload
def volume(length, breadth, height):
  return length * breadth * height @overload
def area(length, breadth, height):
  return length + breadth + height @overload
def area():
  return 0 print(f"area of cuboid with dimension (4, 3, 6) is: {area(4, 3, 6)}")
print(f"area of rectangle with dimension (7, 2) is: {area(7, 2)}")
print(f"area of circle with radius 7 is: {area(7)}")
print(f"area of nothing is: {area()}")
print(f"volume of cuboid with dimension (4, 3, 6) is: {volume(4, 3, 6)}")

为什么 Python 没有函数重载?如何用装饰器实现函数重载?的更多相关文章

  1. python描述符(descriptor)、属性(property)、函数(类)装饰器(decorator )原理实例详解

     1.前言 Python的描述符是接触到Python核心编程中一个比较难以理解的内容,自己在学习的过程中也遇到过很多的疑惑,通过google和阅读源码,现将自己的理解和心得记录下来,也为正在为了该问题 ...

  2. Python【第四课】 装饰器

    本篇内容 什么是装饰器 装饰器需要遵循的原则 实现装饰器的知识储备 高阶函数 函数嵌套 闭包函数 无参函数 装饰器示例 1.什么是装饰器 器即函数 装饰即修饰,意指为其他函数添加新功能 装饰器定义:本 ...

  3. day20_函数的闭包 与 装饰器

    #!/usr/bin/env python # -*- coding:utf-8 -*- # # 一些文章 # https://www.cnblogs.com/Vae1242/p/6944338.ht ...

  4. Python的函数式编程-传入函数、排序算法、函数作为返回值、匿名函数、偏函数、装饰器

    函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计的基本单元. ...

  5. Python【第四篇】函数、内置函数、递归、装饰器、生成器和迭代器

    一.函数 函数是指将一组语句的集合通过一个名字(函数名)封装起来,要想执行这个函数,只需调用其函数名即可 特性: 减少重复代码 使程序变的可扩展 使程序变得易维护 1.定义 def 函数名(参数): ...

  6. Python 带参数的装饰器 [2] 函数参数类型检查

    在Python中,不知道函数参数类型是一个很正常的事情,特别是在一个大项目里.我见过有些项目里,每一个函数体的前十几行都在检查参数类型,这实在是太麻烦了.而且一旦参数有改动,这部分也需要改动.下面我们 ...

  7. Day11 Python基础之装饰器(高级函数)(九)

    在python中,装饰器.生成器和迭代器是特别重要的高级函数   https://www.cnblogs.com/yuanchenqi/articles/5830025.html 装饰器 1.如果说装 ...

  8. python 函数名 、闭包 装饰器 day13

    1,函数名的使用. 函数名是函数的名字,本质就是变量,特殊的变量.函数名()加括号就是执行此函数. 1,单独打印函数名就是此函数的内存地址. def func1(): print(555) print ...

  9. python 全栈开发,Day11(函数名应用,闭包,装饰器初识,带参数以及带返回值的装饰器)

    一.函数名应用 函数名是什么?函数名是函数的名字,本质:变量,特殊的变量. 函数名(),执行此函数. python 规范写法 1. #后面加一个空格,再写内容,就没有波浪线了. 2.一行代码写完,下面 ...

随机推荐

  1. Flink去重统计-基于自定义布隆过滤器

    一.背景说明 在Flink中对流数据进行去重计算是常有操作,如流量域对独立访客之类的统计,去重思路一般有三个: 基于Hashset来实现去重 数据存在内存,容量小,服务重启会丢失. 使用状态编程Val ...

  2. FHD 4K 8K分辨率

    4K(2160P,即4096×2160的像素分辨率)和8K(4320P,即7,680 × 4,320的像素分辨率)属于UHDTV. FHD是FULL HD(Full High Definition)的 ...

  3. 问渠那得清如许?为有源头活水来——对【近取Key】产品进行的深度测评与解析

    在 Build To Show 的场景中,大家各显身手,用各种办法展现技术,的确很难在单一的维度上确定谁赢谁输.但是,在 Build To Win 的场景中,往往市场就是那么一块, 竞争对手占了 70 ...

  4. CF1444A Division 求质因数的方法

    2020.12.20 求质因数的方法 CF1444A Division #include<bits/stdc++.h> #define ll long long #define fp(i, ...

  5. EFCore之增删改查

    1. 连接数据库 通过依赖注入配置应用程序,通过startup类的ConfigureService方法中的AddDbContext将EFCore添加到依赖注入容器 public void Config ...

  6. [设计模式] 读懂UML图

    类之间关系(由强到弱) realize(继承):三角+实线(指向类),继承类(SUV是一种汽车) generalization(实现):三角+虚线(指向接口),实现接口(汽车是一种车) composi ...

  7. [Python] 条件 & 循环

    条件语句 不加 () 结尾加 : elif else 和 if 成对使用 省略判断条件 String:空字符串为False,其余为True int:0为False,其余为True Bool:True为 ...

  8. 还可以使用 -c 参数来显示全部内容,并标出不同之处 diff -c test2.txt test1.txt

    二.实例 在test目录下存放了两个文本文件,test1.txt  test2.txt . 比较这两个文件的异同. diff  test1.txt   test2.txt     "5c5& ...

  9. IT菜鸟之虚拟机VMware的使用

    虚拟机安装完成了,以下是虚拟机的使用. 双击快捷方式,打开vmware虚拟机. 点击创建新虚拟机,这里可以选择创建方式,可以点击典型并一路下一步创建,我们这里讲自定义创建. 这里选择兼容版本,大家可以 ...

  10. STM32自己的封装库

    以前一直使用STM32的标准库,需要一步步地将代码加进去,将编译选项设置好,然后再编译整个工程. 这个编译过程是一个相当慢的过程!完全编译大约需要一支烟的时间.每次建立工程都这么编译,是一个相当浪费时 ...