Nicholas Carlini, David Wagner, Towards Evaluating the Robustness of Neural Networks

提出了在不同范数下\(\ell_0, \ell_2, \ell_{\infty}\)下生成adversarial samples的方法, 实验证明此类方法很有效.

主要内容

基本的概念

本文主要针对多分类问题, 假设神经网络\(F:x \in \mathbb{R}^n \rightarrow y \in \mathbb{R}^m\), 其网络参数为\(\theta\).

假设:

\[F(x)=\mathrm{softmax}(Z(x))=y,
\]

其中\(\mathrm{softmax}(x)_i=\frac{e^{x_i}}{\sum_j e^{x_j}}\).

\[C(x) = \arg \max_i F(x)_i,
\]

为\(x\)的预测类, 不妨设\(C^*(x)\)为其真实的类别.

Adversarial samples 的目标就是构建一个与\(x\)相差无几的\(x'\)(\(\|x-x'\|\)足够小),但是\(C(x')\not =C^*(x)\). 很多构建Adversarial samples可以指定类别:

  • Average Case: 在不正确的标签中随机选取类别;
  • Best Case: 对所有不正确的标签生成Adversariak samples, 并选择最容易成功(即骗过网络)的类别;
  • Worst Case:对所有不正确的标签生成Adversariak samples, 并选择最不容易成功的类别.

文章中介绍了不少现有的方法, 这里不多赘述.

目标函数

一般可以通过如下问题求解\(x'=x+\delta\):

\[\begin{array}{ll}
\min & \mathcal{D}(x, x+\delta) \\
\mathrm{s.t.} & C(x+\delta)=t \\
& x + \delta \in [0, 1]^n,
\end{array}
\]

其中\(\mathcal{D}\)衡量\(x,x+\delta\)之间的距离, 常常为\(\ell_0, \ell_2, \ell_{\infty}\).

但是\(C(x+\delta)=t\)这个条件离散, 这个问题很难直接求解, 作者给出的思路是构造一些函数\(f(x,t)\), 使得当且仅当\(f(x,t)\le0\)的时候此条件满足.

则问题转换为:

\[\begin{array}{ll}
\min & \mathcal{D}(x, x+\delta) \\
\mathrm{s.t.} & f(x,t) \le 0 \\
& x + \delta \in [0, 1]^n,
\end{array}
\]

进一步

\[\begin{array}{ll}
\min & \mathcal{D}(x, x+\delta) + cf(x,t) \\
\mathrm{s.t.}
& x + \delta \in [0, 1]^n.
\end{array}
\]

作者给出了7种符合此类条件的函数(作者尤为推荐第6种):

如何选择c

binary search

如何应对Box约束

图片的元素需要满足\(0\le x_i \le 1\), 如何满足此约束:

  • 简单粗暴地对其裁剪, 大于1的为1, 小于0的为0, 但是这种方法在梯度下降方法比较复杂(如带momentum)的时候效果可能不会太好(既然momemtum要记录变量改变的方向, 而我们又擅自对此方向进行更改);
  • 用\(f(\min (\max(x+\delta,0),1)\)替代\(f(x+\delta)\), 我的理解是, 每次不改变原变量\(x'\), 然后把clip后的\(x'\)喂给\(f\). 作者说此类方法容易方法在次优解间来回振荡的现象;
  • 定义
\[\delta_i = \frac{1}{2}(\tanh (w_i) +1)-x_i,
\]

于是我们只需优化\(w_i\), 且保证\(x_i + \delta_i \in [0, 1]\).

\(L_2\) attack

\[\min \quad \|\frac{1}{2}(\tanh(w)+1)-x\|_2^2+c\cdot f(\frac{1}{2}(\tanh(w)+1), t),
\]

其中

\[f(x',t)=\max(\max \{Z(x')_i:i \not =t\}-Z(x')_t, -\kappa),
\]

是对第6种方法的一个小改进, 其中\(\kappa\)反应了我们对误判发生的信心.

\(L_0\) attack

因为\(L_0\)范数不可微, 所以每一次, 我们先利用\(L_2\) attack来寻找合适的\(\delta\), 令\(g=\nabla f(x+\delta)\), 根据\(g_i \delta_i\)判断每个像素点的重要性, 最不重要的我们删去(根据文中的意思是永久删去).

  • Input: \(x, c\)
  • \(I=\empty\)
  • Do ...:
    1. 计算在\(L_2\)下的解\(x+\delta\)(倘若在\(c\)下找不到, 则在\(2c\)条件下找(嵌套));
    2. \(g=\nabla f(x+\delta)\);
    3. \(i=\arg \min_i g_i \cdot \delta_i, i \not \in I\), 然后\(I=I \cup \{i\}\);

在利用\(L_2\)寻找\(\delta\)的过程中, 若失败, 令\(c=2c\)并重复进行, 直到其成功或者超过了最大的迭代次数.

\(L_{\infty}\) attack

\(\|\delta\|_{\infty}\)作为惩罚项(?)只会针对个别元素, 这在实际实验的时候并不友好, 往往会出现振荡, 于是作者想了一种替代

\[\min \quad c \cdot f( x+ \delta) + \sum_i [(\delta_i-\tau)^+],
\]

这样我们就把可以关注部分突出而非个别.

Towards Evaluating the Robustness of Neural Networks的更多相关文章

  1. CVPR 2018paper: DeepDefense: Training Deep Neural Networks with Improved Robustness第一讲

    前言:好久不见了,最近一直瞎忙活,博客好久都没有更新了,表示道歉.希望大家在新的一年中工作顺利,学业进步,共勉! 今天我们介绍深度神经网络的缺点:无论模型有多深,无论是卷积还是RNN,都有的问题:以图 ...

  2. Hacker's guide to Neural Networks

    Hacker's guide to Neural Networks Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Le ...

  3. 神经网络指南Hacker's guide to Neural Networks

    Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Learning for a few years as part of ...

  4. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  5. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

  6. ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS

    ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS We recently interviewed ...

  7. 提高神经网络的学习方式Improving the way neural networks learn

    When a golf player is first learning to play golf, they usually spend most of their time developing ...

  8. (转)A Beginner's Guide To Understanding Convolutional Neural Networks

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  9. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

随机推荐

  1. js中!!的妙用

    0.-0.null."".false.undefined 或者 NaN转化为false,其他为true

  2. 三维引擎导入obj模型全黑总结

    最近有客户试用我们的三维平台,在导入模型的时候,会出现模型全黑和不可见的情况.本文说下全黑的情况. 经过测试,发现可能有如下几种情况. obj 模型没有法线向量 如果obj模型导出的时候没有导出法线向 ...

  3. MySQL压力测试工具

    一.MySQL自带的压力测试工具--Mysqlslap mysqlslap是mysql自带的基准测试工具,该工具查询数据,语法简单,灵活容易使用.该工具可以模拟多个客户端同时并发的向服务器发出查询更新 ...

  4. javaIO——输入输出流

    字节流与字符流 File类不支持对文件内容进行相关的操作,所有若要处理文件的内容,则需要通过流操作模式来完成. 流的基本操作步骤: Step1:根据文件路径创建File类对象. Step2:根据字节流 ...

  5. OSGI与Spring结合开发web工程

    简介: 作为一个新的事实上的工业标准,OSGi 已经受到了广泛的关注, 其面向服务(接口)的基本思想和动态模块部署的能力, 是企业级应用长期以来一直追求的目标.Spring 是一个著名的 轻量级 J2 ...

  6. 【Spring Framework】Spring入门教程(六)Spring AOP使用

    Spring的AOP 动态代理模式的缺陷是: 实现类必须要实现接口 -JDK动态代理 无法通过规则制定拦截无需功能增强的方法. Spring-AOP主要弥补了第二个不足,通过规则设置来拦截方法,并对方 ...

  7. BigDecimal中要注意的一些事

    一.关于public BigDecimal(double val) BigDecimal中三个主要的构造函数 1 public BigDecimal(double val) 将double表示形式转换 ...

  8. MyEclipse配置Spring框架(基础篇)

    一.新建项目,添加spring的相关jar包等 二.创建相关类以及属性和方法 Student.java package com.yh; public class Student implements ...

  9. 【Matlab】运算符使用整理 * .* / \ .'

    [基本运算符] * :矩阵乘法or数与数相乘 .*:点乘,用于矩阵间对应元素的相乘,或数与数之间,数与矩阵之间的相乘. / :右除.a/b表示矩阵a乘以矩阵b的逆 \ :左除.a\b表示矩阵a的逆乘以 ...

  10. JavaEE期末复习

    期末复习 基础 jsp技术中嵌入java代码,使用的符号 <%%> 掌握jsp技术中引用其他标签库指令标签的书写 掌握jsp技术中request对象setAttribute( ).setC ...