Nicholas Carlini, David Wagner, Towards Evaluating the Robustness of Neural Networks

提出了在不同范数下\(\ell_0, \ell_2, \ell_{\infty}\)下生成adversarial samples的方法, 实验证明此类方法很有效.

主要内容

基本的概念

本文主要针对多分类问题, 假设神经网络\(F:x \in \mathbb{R}^n \rightarrow y \in \mathbb{R}^m\), 其网络参数为\(\theta\).

假设:

\[F(x)=\mathrm{softmax}(Z(x))=y,
\]

其中\(\mathrm{softmax}(x)_i=\frac{e^{x_i}}{\sum_j e^{x_j}}\).

\[C(x) = \arg \max_i F(x)_i,
\]

为\(x\)的预测类, 不妨设\(C^*(x)\)为其真实的类别.

Adversarial samples 的目标就是构建一个与\(x\)相差无几的\(x'\)(\(\|x-x'\|\)足够小),但是\(C(x')\not =C^*(x)\). 很多构建Adversarial samples可以指定类别:

  • Average Case: 在不正确的标签中随机选取类别;
  • Best Case: 对所有不正确的标签生成Adversariak samples, 并选择最容易成功(即骗过网络)的类别;
  • Worst Case:对所有不正确的标签生成Adversariak samples, 并选择最不容易成功的类别.

文章中介绍了不少现有的方法, 这里不多赘述.

目标函数

一般可以通过如下问题求解\(x'=x+\delta\):

\[\begin{array}{ll}
\min & \mathcal{D}(x, x+\delta) \\
\mathrm{s.t.} & C(x+\delta)=t \\
& x + \delta \in [0, 1]^n,
\end{array}
\]

其中\(\mathcal{D}\)衡量\(x,x+\delta\)之间的距离, 常常为\(\ell_0, \ell_2, \ell_{\infty}\).

但是\(C(x+\delta)=t\)这个条件离散, 这个问题很难直接求解, 作者给出的思路是构造一些函数\(f(x,t)\), 使得当且仅当\(f(x,t)\le0\)的时候此条件满足.

则问题转换为:

\[\begin{array}{ll}
\min & \mathcal{D}(x, x+\delta) \\
\mathrm{s.t.} & f(x,t) \le 0 \\
& x + \delta \in [0, 1]^n,
\end{array}
\]

进一步

\[\begin{array}{ll}
\min & \mathcal{D}(x, x+\delta) + cf(x,t) \\
\mathrm{s.t.}
& x + \delta \in [0, 1]^n.
\end{array}
\]

作者给出了7种符合此类条件的函数(作者尤为推荐第6种):

如何选择c

binary search

如何应对Box约束

图片的元素需要满足\(0\le x_i \le 1\), 如何满足此约束:

  • 简单粗暴地对其裁剪, 大于1的为1, 小于0的为0, 但是这种方法在梯度下降方法比较复杂(如带momentum)的时候效果可能不会太好(既然momemtum要记录变量改变的方向, 而我们又擅自对此方向进行更改);
  • 用\(f(\min (\max(x+\delta,0),1)\)替代\(f(x+\delta)\), 我的理解是, 每次不改变原变量\(x'\), 然后把clip后的\(x'\)喂给\(f\). 作者说此类方法容易方法在次优解间来回振荡的现象;
  • 定义
\[\delta_i = \frac{1}{2}(\tanh (w_i) +1)-x_i,
\]

于是我们只需优化\(w_i\), 且保证\(x_i + \delta_i \in [0, 1]\).

\(L_2\) attack

\[\min \quad \|\frac{1}{2}(\tanh(w)+1)-x\|_2^2+c\cdot f(\frac{1}{2}(\tanh(w)+1), t),
\]

其中

\[f(x',t)=\max(\max \{Z(x')_i:i \not =t\}-Z(x')_t, -\kappa),
\]

是对第6种方法的一个小改进, 其中\(\kappa\)反应了我们对误判发生的信心.

\(L_0\) attack

因为\(L_0\)范数不可微, 所以每一次, 我们先利用\(L_2\) attack来寻找合适的\(\delta\), 令\(g=\nabla f(x+\delta)\), 根据\(g_i \delta_i\)判断每个像素点的重要性, 最不重要的我们删去(根据文中的意思是永久删去).

  • Input: \(x, c\)
  • \(I=\empty\)
  • Do ...:
    1. 计算在\(L_2\)下的解\(x+\delta\)(倘若在\(c\)下找不到, 则在\(2c\)条件下找(嵌套));
    2. \(g=\nabla f(x+\delta)\);
    3. \(i=\arg \min_i g_i \cdot \delta_i, i \not \in I\), 然后\(I=I \cup \{i\}\);

在利用\(L_2\)寻找\(\delta\)的过程中, 若失败, 令\(c=2c\)并重复进行, 直到其成功或者超过了最大的迭代次数.

\(L_{\infty}\) attack

\(\|\delta\|_{\infty}\)作为惩罚项(?)只会针对个别元素, 这在实际实验的时候并不友好, 往往会出现振荡, 于是作者想了一种替代

\[\min \quad c \cdot f( x+ \delta) + \sum_i [(\delta_i-\tau)^+],
\]

这样我们就把可以关注部分突出而非个别.

Towards Evaluating the Robustness of Neural Networks的更多相关文章

  1. CVPR 2018paper: DeepDefense: Training Deep Neural Networks with Improved Robustness第一讲

    前言:好久不见了,最近一直瞎忙活,博客好久都没有更新了,表示道歉.希望大家在新的一年中工作顺利,学业进步,共勉! 今天我们介绍深度神经网络的缺点:无论模型有多深,无论是卷积还是RNN,都有的问题:以图 ...

  2. Hacker's guide to Neural Networks

    Hacker's guide to Neural Networks Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Le ...

  3. 神经网络指南Hacker's guide to Neural Networks

    Hi there, I'm a CS PhD student at Stanford. I've worked on Deep Learning for a few years as part of ...

  4. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  5. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

  6. ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS

    ON THE EVOLUTION OF MACHINE LEARNING: FROM LINEAR MODELS TO NEURAL NETWORKS We recently interviewed ...

  7. 提高神经网络的学习方式Improving the way neural networks learn

    When a golf player is first learning to play golf, they usually spend most of their time developing ...

  8. (转)A Beginner's Guide To Understanding Convolutional Neural Networks

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  9. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

随机推荐

  1. 日常Javaweb 2021/11/19

    Javaweb Dao层: //连接数据库,实现增查功能 package dao; import java.sql.Connection; import java.sql.DriverManager; ...

  2. JuiceFS 性能评估指南

    JuiceFS 是一款面向云原生环境设计的高性能 POSIX 文件系统,任何存入 JuiceFS 的数据都会按照一定规则拆分成数据块存入对象存储(如 Amazon S3),相对应的元数据则持久化在独立 ...

  3. k8s之ansible安装

    项目地址:https://github.com/easzlab/kubeasz #:先配置harbor #:利用脚本安装docker root@k8s-harbor1:~# vim docker_in ...

  4. Linux基础命令---ab测试apache性能

    ab ab指令是apache的性能测试工具,它可以测试当前apache服务器的运行性能,显示每秒中可以处理多少个http请求. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.F ...

  5. excel数据导入mySql数据库

    1.将excel数据保存好 2.打开数据库,在表上点击右键,选择导入向导 3.点击下图中红色部门,点击下一步 4.选择excel文件的位置,下方的表空间内,会出现excel中的sheet页,选择要导入 ...

  6. numpy基础教程--对数组进行水平拼接和竖直拼接

    在处理数组的时候经常要用到拼接,numpy中有两个非常实用的函数,可以快捷对数组进行拼接 1.hstack(tup)函数可以接收维度相同的数组,进行水平拼接. 2.vstack(tup)用来竖直拼接 ...

  7. DDS协议解读及测试开发实践

    DDS概述 DDS是OMG在2004年发布的中间件协议和应用程序接口(API)标准,它为分布式系统提供了低延迟.高可靠性.可扩展的通信架构标准.DDS目前在工业.医疗.交通.能源.国防领域都有广泛的应 ...

  8. Pytorch入门上 —— Dataset、Tensorboard、Transforms、Dataloader

    本节内容参照小土堆的pytorch入门视频教程.学习时建议多读源码,通过源码中的注释可以快速弄清楚类或函数的作用以及输入输出类型. Dataset 借用Dataset可以快速访问深度学习需要的数据,例 ...

  9. [BUUCTF]REVERSE——[MRCTF2020]Transform

    [MRCTF2020]Transform 附件 步骤: 例行检查,64位程序,无壳 64位ida载入,找到关键函数 一开始让我们输入一个长度为33位的字符串,之后使用数组dword_40F040打乱了 ...

  10. Windwos堆管理体系以及溢出利用

    <0day安全>学习笔记,主要讨论WIndows2000~WIndowsSP1平台的堆管理策略. 0X01 堆与栈的区别 栈空间是在程序设计时已经规定好怎么使用,使用多少内存空间.典型的栈 ...