本文将同步发布于:

题目

题目链接:gym102331B

题意概述

给你一个长度为 \(n\) 的序列 \(a_i\),求一个最长的子序列满足所有子序列中的元素两两满足 \(a_i\oplus a_j\geq x\),其中 \(\oplus\) 表示按位异或。

题解

发现性质

我们发现 \(p\oplus q\geq x\) 这个性质不是很好处理,决定通过研究异或的性质来解决问题。

我们考虑一个数 \(a\),若其满足 \(< x\),那么一定满足下面的情况:

  • 存在一个 \(i\) 满足 \(a\) 与 \(x\) 在 \([i+1,\infty)\) 位上相同,在第 \(i\) 位上有 \(a<x\)。

我们考虑 \(p\oplus q<x\),发现:

对于位置第一个不同的位置 \(i\),必然有 \(x_i=1,p_i=q_i\),而不是 \(p_i\neq q_i\)。

因此我们可以发现,对于三个数 \(a,b,c\),若其满足 \(a\leq b\leq c\),一定有 \(\min\{a\oplus b,b\oplus c\}\leq a\oplus c\)。

动态规划

得到了上面的性质,我们不难发现,如果我们将 \(a\) 从小到大排序,那么异或的最小值一定会出现在子序列的相邻两项之间。

换句话说,我们只需要保证子序列的所有相邻的项的异或 \(\geq x\),我们得到的就是一个合法的子序列。

设 \(f_i\) 表示以 \(i\) 结尾的最长的合法子序列,那么有转移方程:

\[f_i=\max_{a_i\oplus a_j\geq x}\{f_j\}+1
\]

时间复杂度为 \(\Theta(n^2)\)。

数据结构优化 dp

考虑到上面的转移与异或有关,我们不难想到可以利用 01-Trie 来优化转移过程。

具体地,我们在 Trie 上维护子树中 \(f_i\) 的最大值,每次转移时在 Trie 上根据与 \(x\) 的异或值选择左右儿子,如果另一棵子树内的所有值都满足 异或后 \(\geq x\),那么我们更新答案。

时间复杂度为 \(\Theta(n\log_2a)\)。

参考程序

#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
static char buf[100000],*p1=buf,*p2=buf;
inline int read(void){
reg char ch=getchar();
reg int res=0;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))res=10*res+(ch^'0'),ch=getchar();
return res;
} inline ll readll(void){
reg char ch=getchar();
reg ll res=0;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))res=10*res+(ch^'0'),ch=getchar();
return res;
} const int MAXN=3e5+5;
const int MAXLOG2A=60;
const int mod=998244353; inline int add(reg int a,reg int b){
a+=b;
return a>=mod?a-mod:a;
} inline int sub(reg int a,reg int b){
a-=b;
return a<0?a+mod:a;
} inline int fpow(reg int x,reg int exp){
reg int res=1;
while(exp){
if(exp&1)
res=1ll*res*x%mod;
x=1ll*x*x%mod;
exp>>=1;
}
return res;
} int n;
ll x;
ll a[MAXN]; namespace Trie{
const int MAXSIZE=MAXN*50;
struct Node{
int ch[2];
int sum;
#define ch(x) unit[(x)].ch
#define sum(x) unit[(x)].sum
};
int tot;
Node unit[MAXSIZE];
inline void Init(void){
tot=1;
return;
}
inline void insert(reg ll x,reg int val){
reg int p=1;
for(reg int i=MAXLOG2A-1;i>=0;--i){
reg int c=(x>>i)&1;
if(!ch(p)[c])
ch(p)[c]=++tot;
sum(p)=add(sum(p),val);
p=ch(p)[c];
}
sum(p)=add(sum(p),val);
return;
}
inline int query(reg ll v){
reg int p=1;
reg int res=0;
for(reg int i=MAXLOG2A-1;i>=0;--i){
reg int cv=(v>>i)&1,cx=(x>>i)&1;
if(!cx)
res=add(res,sum(ch(p)[!cv]));
p=ch(p)[cx^cv];
}
if(p)
res=add(res,sum(p));
return res;
}
#undef ch
#undef sum
} int main(void){
n=read(),x=readll();
for(reg int i=0;i<n;++i)
a[i]=readll();
sort(a,a+n);
Trie::Init();
reg int ans=0;
for(reg int i=0;i<n;++i){
reg int val=add(1,Trie::query(a[i]));
Trie::insert(a[i],val);
ans=add(ans,val);
}
printf("%d\n",ans);
return 0;
}

「题解」300iq Contest 2 B Bitwise Xor的更多相关文章

  1. 「题解」300iq Contest 2 H. Honorable Mention

    本文将同步发布于: 洛谷博客: csdn: 博客园: 简书. 题目 题目链接:gym102331H. 题意概述 给定一个长度为 \(n\) 的序列 \(a\),有 \(q\) 次询问,每次询问给定三个 ...

  2. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  3. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  4. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  5. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  6. 「题解」:$Six$

    问题 A: Six 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 来写一篇正经的题解. 每一个数对于答案的贡献与数本身无关,只与它包含了哪几个质因数有关. 所以考虑二 ...

  7. 「题解」:$Smooth$

    问题 A: Smooth 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 维护一个队列,开15个指针,对应前15个素数. 对于每一次添加数字,暴扫15个指针,将指针对应 ...

  8. 「题解」:Kill

    问题 A: Kill 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 80%算法 赛时并没有想到正解,而是选择了另一种正确性较对的贪心验证. 对于每一个怪,我们定义它的 ...

  9. 「题解」:y

    问题 B: y 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 考虑双向搜索. 定义$cal_{i,j,k}$表示当前已经搜索状态中是否存在长度为i,终点为j,搜索过边 ...

随机推荐

  1. hdu5108枚举因子求最小的m

    题意:      给一个n(<=10Y),然后让找到一个最小的m使得n/m是一个素数. 思路:       先用sqrt(n)的时间把所有的因子都求出来,然后在排序,枚举,就行了,这个题目这么做 ...

  2. Windows PE 第八章 延迟加载导入表

    延迟加载导入表 延迟加载导入表是PE中引入的专门用来描述与动态链接库延迟加载相关的数据,因为这些数据所引起的作用和结构与导入表数据基本一致,所以称为延迟加载导入表. 延迟加载导入表和导入表是相互分离的 ...

  3. 在AWS Glue中使用Apache Hudi

    1. Glue与Hudi简介 AWS Glue AWS Glue是Amazon Web Services(AWS)云平台推出的一款无服务器(Serverless)的大数据分析服务.对于不了解该产品的读 ...

  4. HDU - 1789 Doing Homework again(贪心) ~~~学了一波sort对结构体排序

    题目中因为天数和分数是对应的,所以我们使用一个结构体来存分数和截止如期. 一开始做这道题的时候,很自然的就想到对天数排序,然后天数一样的分数从大到小排序,最后WA了之后才发现没有做到"舍小取 ...

  5. TLS是如何保障数据传输安全(中间人攻击)

    前言 前段时间和同事讨论HTTPS的工作原理,当时对这块知识原理掌握还是靠以前看了一些博客介绍,深度不够,正好我这位同事是密码学专业毕业的,结合他密码学角度对tls加解密这阐述,让我对这块原理有了更进 ...

  6. Java 反编译工具哪家强?对比分析瞧一瞧

    前言 Java 反编译,一听可能觉得高深莫测,其实反编译并不是什么特别高级的操作,Java 对于 Class 字节码文件的生成有着严格的要求,如果你非常熟悉 Java 虚拟机规范,了解 Class 字 ...

  7. 『居善地』接口测试 — 6、Httpbin服务介绍

    目录 1.Httpbin服务介绍 2.在Windows系统中部署Httpbin服务 3.在Linux系统中部署Httpbin服务 4.Httpbin访问方式 5.Httpbin常用调试接口 6.总结: ...

  8. Can’t update table ‘xxx’ in stored function/trigger because it is already used by statement which invoked this stored function/trigger

    MySQL: Solution for ERROR 1442 (HY000): Can't update table 'xxx' in stored function/trigger because ...

  9. MSSQL·将一对多的数据合并为以指定分隔符的数据

    阅文时长 | 0.05分钟 字数统计 | 142.4字符 主要内容 | 1.引言&背景 2.Stuff函数语法&模拟场景 3.声明与参考资料 『MSSQL·将一对多的数据合并为以指定分 ...

  10. [刷题] 1016 部分A+B (15分)

    思路 以字符串形式接收 遍历字符串,组装数据,输出结果 #include <iostream> using namespace std; int main() { string a, b; ...