「题解」300iq Contest 2 B Bitwise Xor
本文将同步发布于:
题目
题目链接:gym102331B。
题意概述
给你一个长度为 \(n\) 的序列 \(a_i\),求一个最长的子序列满足所有子序列中的元素两两满足 \(a_i\oplus a_j\geq x\),其中 \(\oplus\) 表示按位异或。
题解
发现性质
我们发现 \(p\oplus q\geq x\) 这个性质不是很好处理,决定通过研究异或的性质来解决问题。
我们考虑一个数 \(a\),若其满足 \(< x\),那么一定满足下面的情况:
- 存在一个 \(i\) 满足 \(a\) 与 \(x\) 在 \([i+1,\infty)\) 位上相同,在第 \(i\) 位上有 \(a<x\)。
我们考虑 \(p\oplus q<x\),发现:
对于位置第一个不同的位置 \(i\),必然有 \(x_i=1,p_i=q_i\),而不是 \(p_i\neq q_i\)。
因此我们可以发现,对于三个数 \(a,b,c\),若其满足 \(a\leq b\leq c\),一定有 \(\min\{a\oplus b,b\oplus c\}\leq a\oplus c\)。
动态规划
得到了上面的性质,我们不难发现,如果我们将 \(a\) 从小到大排序,那么异或的最小值一定会出现在子序列的相邻两项之间。
换句话说,我们只需要保证子序列的所有相邻的项的异或 \(\geq x\),我们得到的就是一个合法的子序列。
设 \(f_i\) 表示以 \(i\) 结尾的最长的合法子序列,那么有转移方程:
\]
时间复杂度为 \(\Theta(n^2)\)。
数据结构优化 dp
考虑到上面的转移与异或有关,我们不难想到可以利用 01-Trie 来优化转移过程。
具体地,我们在 Trie 上维护子树中 \(f_i\) 的最大值,每次转移时在 Trie 上根据与 \(x\) 的异或值选择左右儿子,如果另一棵子树内的所有值都满足 异或后 \(\geq x\),那么我们更新答案。
时间复杂度为 \(\Theta(n\log_2a)\)。
参考程序
#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
static char buf[100000],*p1=buf,*p2=buf;
inline int read(void){
reg char ch=getchar();
reg int res=0;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))res=10*res+(ch^'0'),ch=getchar();
return res;
}
inline ll readll(void){
reg char ch=getchar();
reg ll res=0;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))res=10*res+(ch^'0'),ch=getchar();
return res;
}
const int MAXN=3e5+5;
const int MAXLOG2A=60;
const int mod=998244353;
inline int add(reg int a,reg int b){
a+=b;
return a>=mod?a-mod:a;
}
inline int sub(reg int a,reg int b){
a-=b;
return a<0?a+mod:a;
}
inline int fpow(reg int x,reg int exp){
reg int res=1;
while(exp){
if(exp&1)
res=1ll*res*x%mod;
x=1ll*x*x%mod;
exp>>=1;
}
return res;
}
int n;
ll x;
ll a[MAXN];
namespace Trie{
const int MAXSIZE=MAXN*50;
struct Node{
int ch[2];
int sum;
#define ch(x) unit[(x)].ch
#define sum(x) unit[(x)].sum
};
int tot;
Node unit[MAXSIZE];
inline void Init(void){
tot=1;
return;
}
inline void insert(reg ll x,reg int val){
reg int p=1;
for(reg int i=MAXLOG2A-1;i>=0;--i){
reg int c=(x>>i)&1;
if(!ch(p)[c])
ch(p)[c]=++tot;
sum(p)=add(sum(p),val);
p=ch(p)[c];
}
sum(p)=add(sum(p),val);
return;
}
inline int query(reg ll v){
reg int p=1;
reg int res=0;
for(reg int i=MAXLOG2A-1;i>=0;--i){
reg int cv=(v>>i)&1,cx=(x>>i)&1;
if(!cx)
res=add(res,sum(ch(p)[!cv]));
p=ch(p)[cx^cv];
}
if(p)
res=add(res,sum(p));
return res;
}
#undef ch
#undef sum
}
int main(void){
n=read(),x=readll();
for(reg int i=0;i<n;++i)
a[i]=readll();
sort(a,a+n);
Trie::Init();
reg int ans=0;
for(reg int i=0;i<n;++i){
reg int val=add(1,Trie::query(a[i]));
Trie::insert(a[i],val);
ans=add(ans,val);
}
printf("%d\n",ans);
return 0;
}
「题解」300iq Contest 2 B Bitwise Xor的更多相关文章
- 「题解」300iq Contest 2 H. Honorable Mention
本文将同步发布于: 洛谷博客: csdn: 博客园: 简书. 题目 题目链接:gym102331H. 题意概述 给定一个长度为 \(n\) 的序列 \(a\),有 \(q\) 次询问,每次询问给定三个 ...
- 「题解」「美团 CodeM 资格赛」跳格子
目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...
- 「题解」「HNOI2013」切糕
文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...
- 「题解」JOIOI 王国
「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...
- 「题解」:[loj2763][JOI2013]现代豪宅
问题 A: 现代豪宅 时间限制: 1 Sec 内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...
- 「题解」:$Six$
问题 A: Six 时间限制: 1 Sec 内存限制: 512 MB 题面 题面谢绝公开. 题解 来写一篇正经的题解. 每一个数对于答案的贡献与数本身无关,只与它包含了哪几个质因数有关. 所以考虑二 ...
- 「题解」:$Smooth$
问题 A: Smooth 时间限制: 1 Sec 内存限制: 512 MB 题面 题面谢绝公开. 题解 维护一个队列,开15个指针,对应前15个素数. 对于每一次添加数字,暴扫15个指针,将指针对应 ...
- 「题解」:Kill
问题 A: Kill 时间限制: 1 Sec 内存限制: 256 MB 题面 题面谢绝公开. 题解 80%算法 赛时并没有想到正解,而是选择了另一种正确性较对的贪心验证. 对于每一个怪,我们定义它的 ...
- 「题解」:y
问题 B: y 时间限制: 1 Sec 内存限制: 256 MB 题面 题面谢绝公开. 题解 考虑双向搜索. 定义$cal_{i,j,k}$表示当前已经搜索状态中是否存在长度为i,终点为j,搜索过边 ...
随机推荐
- 基于Neptune开发板的键盘蓝牙模块DIY指南
目录: 1.下载开发板程序2.安装USB串口(CH340)驱动3.安装烧写工具4.烧写开发板程序 本期我们带来基于润和Neptune开发板(以下简称Neptune开发板)的键盘蓝牙模块DIY指南,利用 ...
- 文件描述符fd
java 后台运行程序命令 nohup java -jar babyshark-0.0.1-SNAPSHOT.jar > log.file 2>&1 & 命令解释:后台启动 ...
- android之Parcelable
java编程中,为了将对象的状态保存,需要将对象序列化. 在android中,序列化有两种方法可供选择,一个是java自带的序列化方法,只需实现Serializeable接口即可:另一个是androi ...
- .Net 中两分钟集成敏感词组件
现如今大部分服务都会有用户输入,为了服务的正常运行,很多时候不得不针对输入进行敏感词的检测.替换.如果人工做这样的工作,不仅效率低,成本也高.所以,先让代码去处理输入,成为了经济方便的途径.水弟在这里 ...
- 微信小程序中的常见弹框
显示加载中的提示框 wx.showLoading() 当我们正在在进行网络请求时,常常就需要这个提示框 手动调用wx.hideLoading()方法才能够关闭这个提示框,通常在数据请求完毕时就应该关闭 ...
- 初识ClickHouse——安装与入门
前言: 久闻 ClickHouse 大名,一直没有去详细了解.近期看了下 ClickHouse 相关文档,决定安装体验下.想了解 ClickHouse 的小伙伴可以一起跟着学习哦.本篇文章主要介绍 C ...
- QFNU-ACM 2020.04.05个人赛补题
A.CodeForces-124A (简单数学题) #include<cstdio> #include<algorithm> #include<iostream> ...
- Spring Cloud Gateway之全局过滤器在工作中的使用场景
一.使用注意事项 1.全局过滤器作用于所有的路由,不需要单独配置. 2.通过@Order来指定执行的顺序,数字越小,优先级越高. 二.默认全局拦截器的整体架构 三.实战场景,例如,校验token.记录 ...
- mac SSH私钥取消密码(passphrase)
取消私钥中的密码: 1.使用openssl命令去掉私钥的密码openssl rsa -in ~/.ssh/id_rsa -out ~/.ssh/id_rsa_new 2.备份旧私钥mv ~/.ssh/ ...
- macos python安装mysqlapi集合
记录一下,接了一个python2 django1.x的项目,很老了导致很多扩展无法安装 os version:macos catalina python version: 2.7.18 而django ...