「题解」300iq Contest 2 B Bitwise Xor
本文将同步发布于:
题目
题目链接:gym102331B。
题意概述
给你一个长度为 \(n\) 的序列 \(a_i\),求一个最长的子序列满足所有子序列中的元素两两满足 \(a_i\oplus a_j\geq x\),其中 \(\oplus\) 表示按位异或。
题解
发现性质
我们发现 \(p\oplus q\geq x\) 这个性质不是很好处理,决定通过研究异或的性质来解决问题。
我们考虑一个数 \(a\),若其满足 \(< x\),那么一定满足下面的情况:
- 存在一个 \(i\) 满足 \(a\) 与 \(x\) 在 \([i+1,\infty)\) 位上相同,在第 \(i\) 位上有 \(a<x\)。
我们考虑 \(p\oplus q<x\),发现:
对于位置第一个不同的位置 \(i\),必然有 \(x_i=1,p_i=q_i\),而不是 \(p_i\neq q_i\)。
因此我们可以发现,对于三个数 \(a,b,c\),若其满足 \(a\leq b\leq c\),一定有 \(\min\{a\oplus b,b\oplus c\}\leq a\oplus c\)。
动态规划
得到了上面的性质,我们不难发现,如果我们将 \(a\) 从小到大排序,那么异或的最小值一定会出现在子序列的相邻两项之间。
换句话说,我们只需要保证子序列的所有相邻的项的异或 \(\geq x\),我们得到的就是一个合法的子序列。
设 \(f_i\) 表示以 \(i\) 结尾的最长的合法子序列,那么有转移方程:
\]
时间复杂度为 \(\Theta(n^2)\)。
数据结构优化 dp
考虑到上面的转移与异或有关,我们不难想到可以利用 01-Trie 来优化转移过程。
具体地,我们在 Trie 上维护子树中 \(f_i\) 的最大值,每次转移时在 Trie 上根据与 \(x\) 的异或值选择左右儿子,如果另一棵子树内的所有值都满足 异或后 \(\geq x\),那么我们更新答案。
时间复杂度为 \(\Theta(n\log_2a)\)。
参考程序
#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
static char buf[100000],*p1=buf,*p2=buf;
inline int read(void){
reg char ch=getchar();
reg int res=0;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))res=10*res+(ch^'0'),ch=getchar();
return res;
}
inline ll readll(void){
reg char ch=getchar();
reg ll res=0;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))res=10*res+(ch^'0'),ch=getchar();
return res;
}
const int MAXN=3e5+5;
const int MAXLOG2A=60;
const int mod=998244353;
inline int add(reg int a,reg int b){
a+=b;
return a>=mod?a-mod:a;
}
inline int sub(reg int a,reg int b){
a-=b;
return a<0?a+mod:a;
}
inline int fpow(reg int x,reg int exp){
reg int res=1;
while(exp){
if(exp&1)
res=1ll*res*x%mod;
x=1ll*x*x%mod;
exp>>=1;
}
return res;
}
int n;
ll x;
ll a[MAXN];
namespace Trie{
const int MAXSIZE=MAXN*50;
struct Node{
int ch[2];
int sum;
#define ch(x) unit[(x)].ch
#define sum(x) unit[(x)].sum
};
int tot;
Node unit[MAXSIZE];
inline void Init(void){
tot=1;
return;
}
inline void insert(reg ll x,reg int val){
reg int p=1;
for(reg int i=MAXLOG2A-1;i>=0;--i){
reg int c=(x>>i)&1;
if(!ch(p)[c])
ch(p)[c]=++tot;
sum(p)=add(sum(p),val);
p=ch(p)[c];
}
sum(p)=add(sum(p),val);
return;
}
inline int query(reg ll v){
reg int p=1;
reg int res=0;
for(reg int i=MAXLOG2A-1;i>=0;--i){
reg int cv=(v>>i)&1,cx=(x>>i)&1;
if(!cx)
res=add(res,sum(ch(p)[!cv]));
p=ch(p)[cx^cv];
}
if(p)
res=add(res,sum(p));
return res;
}
#undef ch
#undef sum
}
int main(void){
n=read(),x=readll();
for(reg int i=0;i<n;++i)
a[i]=readll();
sort(a,a+n);
Trie::Init();
reg int ans=0;
for(reg int i=0;i<n;++i){
reg int val=add(1,Trie::query(a[i]));
Trie::insert(a[i],val);
ans=add(ans,val);
}
printf("%d\n",ans);
return 0;
}
「题解」300iq Contest 2 B Bitwise Xor的更多相关文章
- 「题解」300iq Contest 2 H. Honorable Mention
本文将同步发布于: 洛谷博客: csdn: 博客园: 简书. 题目 题目链接:gym102331H. 题意概述 给定一个长度为 \(n\) 的序列 \(a\),有 \(q\) 次询问,每次询问给定三个 ...
- 「题解」「美团 CodeM 资格赛」跳格子
目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...
- 「题解」「HNOI2013」切糕
文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...
- 「题解」JOIOI 王国
「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...
- 「题解」:[loj2763][JOI2013]现代豪宅
问题 A: 现代豪宅 时间限制: 1 Sec 内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...
- 「题解」:$Six$
问题 A: Six 时间限制: 1 Sec 内存限制: 512 MB 题面 题面谢绝公开. 题解 来写一篇正经的题解. 每一个数对于答案的贡献与数本身无关,只与它包含了哪几个质因数有关. 所以考虑二 ...
- 「题解」:$Smooth$
问题 A: Smooth 时间限制: 1 Sec 内存限制: 512 MB 题面 题面谢绝公开. 题解 维护一个队列,开15个指针,对应前15个素数. 对于每一次添加数字,暴扫15个指针,将指针对应 ...
- 「题解」:Kill
问题 A: Kill 时间限制: 1 Sec 内存限制: 256 MB 题面 题面谢绝公开. 题解 80%算法 赛时并没有想到正解,而是选择了另一种正确性较对的贪心验证. 对于每一个怪,我们定义它的 ...
- 「题解」:y
问题 B: y 时间限制: 1 Sec 内存限制: 256 MB 题面 题面谢绝公开. 题解 考虑双向搜索. 定义$cal_{i,j,k}$表示当前已经搜索状态中是否存在长度为i,终点为j,搜索过边 ...
随机推荐
- UVA10905孩子们的游戏
题意: 给你n个数字,让你用这n个数组组成一个最大的数字并输出来. 思路: 这个题目看完第一反应就是直接按照字符串排序,然后轻轻松松写完,交上去直接wa了,为什么会wa呢?感觉 ...
- Win64 驱动内核编程-26.强制结束进程
强制结束进程 依然已经走到驱动这一层了,那么通常结束掉一个进程不是什么难的事情.同时因为win64 位的各种保护,导致大家慢慢的已经不敢HOOK了,当然这指的是产品.作为学习和破解的话当然可以尝试各种 ...
- Intel汇编语言程序设计学习-第五章 过程-上
过程 5.1 简介 需要阅读本章的理由可能很多: 1.读者可能想要学习如何在汇编语言中进行输入输出. 2.应该了解运行时栈(runtime stack),运行时栈是子过程(函数)调用以及从子过程返回 ...
- 在Windows上使用终端模拟程序连接操作Linux以及上传下载文件
在Windows上使用终端模拟程序连接操作Linux以及上传下载文件 [很简单,就是一个工具的使用而已,放这里是做个笔记.] 刚买的云主机,或者是虚拟机里安装的Linux系统,可能会涉及到在windo ...
- Linux查看进程和查看端口占用
查看进程 ps -ef|grep ****.jar 查看端口占用(如果出现命令找不到,安装一下工具即可) netstat -lnp|grep 端口号 (命令找不到解决办法) yum install n ...
- svg web拓扑更新了,支持动态添加svg组件
版本1.0请点此 预览地址 https://svg.yaolunmao.top 如何使用 # 克隆项目 git clone https://github.com/yaolunmao/vue-webto ...
- 编译课设·CLion到VS踩坑·解决·备忘录
应试用,VS使用习惯和JB系差别还是蛮大的 打不过他们就加入他们 键位修改 工具-选项 键盘:改keymap 字体和颜色:宋体必改. 自动恢复:自动保存默认3分钟 CMake:自救时可以看一下 键位名 ...
- 缓存架构中的服务详解!SpringBoot中二级缓存服务的实现
创建缓存服务 创建缓存服务接口项目 创建myshop-service-redis-api项目,该项目只负责定义接口 创建项目的pom.xml: <?xml version="1.0&q ...
- xrandr 直接输这个能显示可用的分辨和当前的分辨率 xrandr -s 1920x1200就设置成指定的分辨率
利用 xrandr 命令修改屏幕分辨率 时间 2016-10-29 原文 http://blog.csdn.net/mao0514/article/details/52965700 问题背景 ...
- 018.Python迭代器以及map和reduce函数
一 迭代器 能被next进行调用,并且不断返回下一个值的对象 特征:迭代器会生成惰性序列,它通过计算把值依次的返回,一边循环一边计算而不是一次性得到所有数据 优点:需要数据的时候,一次取一个,可以大大 ...