part 1 暴力

不难发现有一个 $\mathcal O(K^2n)$ 的基础 dp:

$$f_{i,j+l}=\min(f_{i,j+l},f_{i-1,j}+(x_i-x_{i-1})jj+c_i*l)$$

这其中 f 代表在第 i 个点已经买了 j+l 个,其中当前第 i 个点买了 l 个,前 i-1 个点买了 j 个的最小价值。

这样的话可以水到 $90pts$,但是如果是联赛的话应该没有这么高的暴力分。

code

#include<bits/stdc++.h>
#define int long long
#define N 10005
using namespace std;
int E,K,f[N],n,c[N],x[N],dp[502][N],sum[N];
struct mm
{int c,x,f;}p[N];
namespace AYX
{ inline bool cmp(mm i,mm j){return i.x<j.x;}
inline short main()
{ scanf("%lld%lld%lld",&K,&E,&n);
for(int i=1;i<=n;++i)scanf("%lld%lld%lld",&p[i].x,&p[i].f,&p[i].c);
memset(dp,0x3f3f3f3f,sizeof(dp));
dp[1][0]=0;
sort(p+1,p+1+n,cmp);
p[n+1].x=E;p[n+1].f=K;
for(int i=1;i<=n+1;++i)sum[i]=sum[i-1]+p[i].f;
for(int i=2;i<=n+1;++i)
for(int j=0;j<=min(K,sum[i-1]);++j)
for(int l=0;l<=p[i-1].f;++l)
{ if(l+j>K)break;
dp[i][j+l]=min(dp[i][j+l],dp[i-1][j]+p[i-1].c*l+(j+l)*(j+l)*(p[i].x-p[i-1].x));
}
printf("%lld\n",dp[n+1][K]);
return 0;
}
}
signed main()
{return AYX::main();
}

part 2 单调队列优化 dp

对式子进行转换,我们能够得到:

$$f_{i,k}=\min(f_{i,j},f_{i-1,j}+(x_i-x_{i-1})jj-c_ij)+c_ik$$

这样 $c_i\times j$ 会变成一个常数,式子只和 i 和 j 有关。

采用单调队列使复杂度降到 $\mathcal O(Kn)$ 稳稳通过。

当然还可以用二进制优化背包来降复杂度,只不过不如单调队列快。

code

#include<bits/stdc++.h>
#define int long long
#define N 10005
using namespace std;
int E,K,f[N],n,c[N],x[N],dp[502][N],sum[N],dui[N],head,tail;
struct mm
{int c,x,f;}p[N];
namespace AYX
{ inline bool cmp(mm i,mm j){return i.x<j.x;}
inline int calc(int i,int j)
{return dp[i-1][j]+(p[i].x-p[i-1].x)*j*j-j*p[i].c;}
inline short main()
{ scanf("%lld%lld%lld",&K,&E,&n);
for(int i=1;i<=n;++i)scanf("%lld%lld%lld",&p[i].x,&p[i].f,&p[i].c);
memset(dp,0x3f3f3f3f,sizeof(dp));
dp[0][0]=0;
sort(p+1,p+1+n,cmp);
for(int i=1;i<=n;++i)
{ head=1;tail=0;
for(int j=0;j<=K;++j)
{ int val=calc(i,j);
while(head<=tail and calc(i,dui[tail])>val)tail--;
while(head<=tail and j-p[i].f>dui[head])++head;
dui[++tail]=j;
dp[i][j]=calc(i,dui[head])+p[i].c*j;
}
}
printf("%lld\n",dp[n][K]+(E-p[n].x)*K*K);
return 0;
}
}
signed main()
{return AYX::main();
}

[USACO10NOV]Buying Feed G的更多相关文章

  1. P4544 [USACO10NOV]Buying Feed G

    part 1 暴力 不难发现有一个 $\mathcal O(K^2n)$ 的基础 dp: $$f_{i,j+l}=\min(f_{i,j+l},f_{i-1,j}+(x_i-x_{i-1})\time ...

  2. ACM BUYING FEED

    BUYING FEED 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 Farmer John needs to travel to town to pick up ...

  3. 2020: [Usaco2010 Jan]Buying Feed, II

    2020: [Usaco2010 Jan]Buying Feed, II Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 220  Solved: 162[ ...

  4. BUYING FEED

    Problem F: F BUYING FEED Description Farmer John needs to travel to town to pick up K (1 <= K < ...

  5. 洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II

    洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II https://www.luogu.org/problemnew/show/P2616 题目描述 Farmer ...

  6. USACO Buying Feed, II

    洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II 洛谷传送门 JDOJ 2671: USACO 2010 Jan Silver 2.Buying Feed, II ...

  7. 【P2616】 【USACO10JAN】购买饲料II Buying Feed, II

    P2616 [USACO10JAN]购买饲料II Buying Feed, II 题目描述 Farmer John needs to travel to town to pick up K (1 &l ...

  8. [USACO10NOV]购买饲料Buying Feed 单调队列优化DP

    题目描述 约翰开车来到镇上,他要带 KKK 吨饲料回家.运送饲料是需要花钱的,如果他的车上有 XXX 吨饲料,每公里就要花费 X2X^2X2 元,开车D公里就需要 D×X2D\times X^2D×X ...

  9. P4544 [USACO10NOV]购买饲料Buying Feed

    额,直接思路就dp吧.(我还想了想最短路之类的233但事实证明不行2333.....) 直入主题: 化简题意:在x轴上有n个点,坐标为xi.从原点出发,目标点为e,在途中需要收集K重量的物品,在每个点 ...

随机推荐

  1. SpringBoot学习之thymeleaf的使用

    thymeleaf介绍 简单说, Thymeleaf 是一个跟 Velocity.FreeMarker 类似的模板引擎,它可以完全替代 JSP .相较与其他的模板引擎,它有如下三个极吸引人的特点: 1 ...

  2. css - 行高

    css - 行高 line-height行高 取值:px | em | rem | 百分比 | 纯数字 | normal | inherit 设置给:块.行内.行内块 应用给:文本 继承:块.行内.被 ...

  3. JDBC高级篇(MYSQL)—— JDBC中初涉数据库事务

    注意:其中的JdbcUtil是我自定义的连接工具类:代码例子链接: package d_transaction; import java.sql.Connection; import java.sql ...

  4. Vulnhub靶机渗透 -- DC5

    信息收集 通过nmap搜索到IP为:192.168.200.11 开启了80http.111RPC服务端口 先打开网页,然后进行目录爆破 contact.php 攻击 经搜索没有发现可以攻击wheel ...

  5. vue-class和style样式绑定

    前言 操作元素的 class 样式列表和 style 内联样式为数据绑定是前端开发中一个常见的需求,这些样式都属于元素的属性 attribute ,因此我们可以通过 v-bind 来动态绑定元素的样式 ...

  6. 一、部署sqlserver

    1.下载并挂载sqlserver镜像 2.填写秘钥:6GPYM-VHN83-PHDM2-Q9T2R-KBV83 3.默认下一步 4.勾选需要的功能 5.默认下一步 6.默认下一步 等待安装完成即可. ...

  7. MyBatis学习总结(五)——关联表查询的实现

    一.一对一关联 1.1.提出需求 根据班级id查询班级信息(带老师的信息) 1.2.创建表和数据 创建一张教师表和班级表,这里我们假设一个老师只负责教一个班,那么老师和班级之间的关系就是一种一对一的关 ...

  8. K8S集群架构的组件组成

    1.Master--主控节点 (1)apiserver:集群统一入口,以restful的方式,交给etcd存储 (2)scheduler:节点调度,选择node节点应用部署 (3)controller ...

  9. Python - //和/的区别

    / 表示浮点数除法,返回浮点结果; // 表示整数除法,返回不大于结果的一个最大的整数 print("6 // 4 = " + str(6 // 4)) print("6 ...

  10. 基本ServletWEB项目

    项目搭建 项目链接https://gitee.com/zhangjzm/smbms.git 前置知识,Servlet JSP 结构图 搭建maven web项目 1.搭建一个maven web项目 2 ...