题目链接

AtCoder:https://agc015.contest.atcoder.jp/tasks/agc015_f

洛谷:https://www.luogu.org/problemnew/show/AT2384

Solution

神仙结论题...窝只会打表找规律...

我们定义\(f(i,j)\)表示\((i,j)\)的\(\rm Euclidean\ step\ count\),也就是走多少步那个玩意。

定义\(Fib(n)​\)表示斐波那契数列第\(n​\)项,其中\(Fib(0)=Fib(1)=1​\)。

有一个比较显然(好找出规律)的结论:\(f(Fib(x),Fib(x+1))=x​\),且不存在任意\((i,j)​\)满足\(f(i,j)\geqslant x,i< Fib(x),j< Fib(x+1)​\),这个由(打表)数学归纳可得。

我们定义一个二元组\((x,y)​\)是好的,当且仅当不存在\((i,j)​\)满足\(i<x,j<y,f(i,j)>f(x,y)​\),显然只有好的二元组能贡献答案。

我们定义一个二元组\((x,y)​\)是优秀的,当且仅当\(x,y\leqslant Fib(v+2)+Fib(v-1)​\),其中\(v=f(x,y)​\)。

那么有一个结论:一个好的二元组进行一次\(\rm Euclidean\ step​\)之后一定为一个优秀的二元组,证明如下:

我们考虑反证法证明,设好的二元组为\((a,b)=(y,py+x)\)满足\(x\leqslant y,f(x,y)=v+1\),优秀的二元组为\((x,y)\),假设\(y> Fib(v+2)+Fib(v-1)\):

可得:\(a=y>Fib(v+2),b=py+x\geqslant x+y>Fib(v)+F(v+2)+Fib(v-1)=Fib(v+3)\)。

注意到\(f(Fib(v+2),Fib(v+3))=v+2>f(a,b)\),即存在\((a',b')\)满足\(a'>a,b'>b\)且\(f(a',b')>f(a,b)\),与\((a,b)\)是好的二元组矛盾。

打表可知优秀的二元组并不多,貌似是\(O(\log^2 n)​\)级别?我也不是特别清楚,所以我们可以把所有的优秀的二元组预处理出来,然后求答案就好了。

复杂度可能是\(O(q\log n)​\)...

#include<bits/stdc++.h>
using namespace std; #define int long long void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} #define lf double
#define ll long long const int maxn = 110;
const int inf = 1e9;
const lf eps = 1e-8;
const int mod = 1e9+7; #define pii pair<int,int >
#define fr first
#define sc second #define vec vector<pii >
#define mp make_pair
#define pb push_back #define iter vector <pii > :: iterator vec t[maxn];
int n,m,q,f[maxn]; signed main() {
t[1].pb(mp(1,2)),t[1].pb(mp(1,3)),t[1].pb(mp(1,4));
f[0]=f[1]=1;for(int i=2;i<=100;i++) f[i]=f[i-1]+f[i-2];
for(int i=1;i<=100;i++)
for(int j=0,l=t[i].size()-1;j<=l;j++) {
int x=t[i][j].sc,y=t[i][j].fr+x;
while(y<=f[i+3]+f[i]) t[i+1].pb(mp(x,y)),y+=x;
}read(q);
for(int i=1;i<=q;i++) {
read(n),read(m);if(n>m) swap(n,m);
int p=1,ans=0;
while(f[p+1]<=n&&f[p+2]<=m) p++;
printf("%lld ",p);
if(p==1) {write(n%mod*m%mod);continue;}
for(int j=0,l=t[p-1].size()-1;j<=l;j++) {
int x=t[p-1][j].fr,y=t[p-1][j].sc;
if(y<=n) ans=(ans+(m-x)/y)%mod;
if(y<=m) ans=(ans+(n-x)/y)%mod;
}write(ans);
}
return 0;
}

[AT2384] [agc015_f] Kenus the Ancient Greek的更多相关文章

  1. agc015F - Kenus the Ancient Greek(结论题)

    题意 题目链接 $Q$组询问,每次给出$[x, y]$,定义$f(x, y)$为计算$(x, y)$的最大公约数需要的步数,设$i \leqslant x, j \leqslant y$,求$max( ...

  2. agc015F Kenus the Ancient Greek

    题意: 有$Q$次询问,每次给定$X_i$和$Y_i$,求对于$1\leq x \leq X_i , 1 \leq y \leq Y_i$,$(x,y)$进行辗转相除法的步数的最大值以及取到最大值的方 ...

  3. Atcoder Grand Contest 015 F - Kenus the Ancient Greek(找性质+乱搞)

    洛谷题面传送门 & Atcoder 题面传送门 一道难度 Au 的 AGC F,虽然看过题解之后感觉并不复杂,但放在现场确实挺有挑战性的. 首先第一问很简单,只要每次尽量让"辗转相除 ...

  4. Atcoder训练计划

    争取三天做完一套吧,太简单的就写一句话题解吧(其实也没多少会做的). 自己做出来的在前面用*标记 agc007 *A - Shik and Stone 暴力dfs即可,直接判断个数 *B - Cons ...

  5. A&G¥C015

    A&G¥C015 A A+...+B Problem 正常A+B我还是会的,但是又加了个省略号就不会了/kk B Evilator 不会 C Nuske vs Phantom Thnook 以 ...

  6. POJ1151Atlantis 矩形面积并[线段树 离散化 扫描线]

    Atlantis Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21734   Accepted: 8179 Descrip ...

  7. 20151207Study

    Liberal lawmakers proposed a bill to reduce the cost of medicine for older Americans.自由主义立法者提出一条减少老年 ...

  8. hdu 1542 & & poj 1151

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  9. [POJ1151]Atlantis

    [POJ1151]Atlantis 试题描述 There are several ancient Greek texts that contain descriptions of the fabled ...

随机推荐

  1. LintCode——尾部的零

    尾部的零:设计一个算法,计算出n阶乘中尾部零的个数 样例:11! = 39916800.因此应该返回2 分析:假如你把1 × 2 ×3× 4 ×……×N中每一个因数分解质因数,例如 1 × 2 × 3 ...

  2. python代码异常范围检查方法(非常实用)

    对于python编程的代码,如果需要进行相应的检查其中的错误或者异常,并且确定出现异常语句的大致范围,主要有以下四种方法: 1.第一种方法:遇错即止(告知原因) try  ......(所需检查语句) ...

  3. 关于UC浏览器兼容scroll事件问题

    经过本人查阅无数资料,最终得出一个比较简单,具有一定兼容性的结果. $(window).scroll(function( ) { var scrollTop = document.documentEl ...

  4. linux shell 压缩解压命令

    .tar 解包:tar xvf FileName.tar打包:tar cvf FileName.tar DirName(注:tar是打包,不是压缩!)———————————————.gz解压1:gun ...

  5. Docker配置

    Docker基本配置 1.安装 在ubuntu下面执行 wget -qO- https://get.docker.com/ | sh 命令安装Docker. 如果命令的方式无法安装,也可以使用apt- ...

  6. 多个EXCEL文件合并成一个

    Python的numpy处理起来会比较方便,有空实现一下,这里是Excel内部代码的方式: 合并方法如下: 1.需要把多个excel表都放在同一个文件夹里面,并在这个文件夹里面新建一个excel.如图 ...

  7. 利用jsencrypt 做非对称加密

    1.生成 private key openssl genrsa -out rsa_1024_priv.pem 1024 2.生成public key openssl rsa -pubout -in r ...

  8. Vue.js 相关知识(组件)

    1. 组件介绍 组件(component),vue.js最强大的功能之一 作用:封装可重用的代码,通常一个组件就是一个功能体,便于在多个地方都能调用该功能体 根组件:我们实例化的Vue对象就是一个组件 ...

  9. SharpDevelop 笔记

    1. 下载地址: http://jaist.dl.sourceforge.net/project/sharpdevelop/ 2. 使用 VS2012 去掉编译不通过的 Test ,其它可以运行调试. ...

  10. fsck命令详解

    基础命令学习目录首页 本文出自 “airfish2000” 博客,更多命令查看博客: http://airfish2000.blog.51cto.com/10829608/1880801   fsck ...