【刷题】洛谷 P4234 最小差值生成树
题目描述
给定一个标号为从 \(1\) 到 \(n\) 的、有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树。
输入输出格式
输入格式:
第一行两个数 \(n, m\) ,表示图的点和边的数量。
第二行起 \(m\) 行,每行形如 \(u_i, v_i, w_i\) ,代表 \(u_i\) 到 \(v_i\) 间有一条长为 \(w_i\) 的无向边。
输出格式:
输出一行一个整数,代表你的答案。
数据保证存在至少一棵生成树。
输入输出样例
输入样例#1:
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
输出样例#1:
20
说明
对于 30% 的数据,满足 \(1 \leq n \leq 100, 1 \leq m \leq 1000\)
对于 97% 的数据,满足 \(1 \leq n \leq 500, 1 \leq m \leq 100000\)
对于 100% 的数据,满足 \(1 \leq n \leq 50000, 1 \leq m \leq 200000, 1 \leq w_i \leq 10000\)
题解
LCT
先从对边按边权大到小排序
然后,朴素地看,我们枚举每条边,以它的权值作为生成树的最小值,最优答案是多少。显然,如果我们确定了下界,那么上界一定是以下界为最小值的MST中的最大值。所以,枚举了最小值,那么对于它的最优答案就是所有边权大于这个最小值的边组成的图的MST中的边权的最大值减去枚举的这个最小值。
由于已经从大到小排好序了,那么就直接不断加边,用LCT维护MST就行了
那么对于每一次枚举,都要找一次整个MST的最大值,这个用LCT做不到,那就直接用一个数组存某条边是否在MST中,再用一个指针一直指向最前面的存在于MST中的边就行了
当然,边权从小到大排序也可做,过程是一样的
从小到大,维护最大生成树
从大到小,维护最小生成树
#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=50000+10,MAXM=200000+10,inf=0x3f3f3f3f;
int n,m,fa[MAXN],in[MAXM],ip=1,ans=inf;
struct edge{
int u,v,w;
inline bool operator < (const edge &A) const {
return w>A.w;
};
};
edge side[MAXM];
#define lc(x) ch[(x)][0]
#define rc(x) ch[(x)][1]
struct LCT{
int ch[MAXN+MAXM][2],fa[MAXN+MAXM],rev[MAXN+MAXM],Mx[MAXN+MAXM],id[MAXN+MAXM],stack[MAXN+MAXM],cnt,val[MAXN+MAXM];
inline void init()
{
memset(ch,0,sizeof(ch));
memset(fa,0,sizeof(fa));
memset(Mx,0,sizeof(Mx));
memset(id,0,sizeof(id));
memset(val,0,sizeof(val));
memset(rev,0,sizeof(rev));
}
inline bool nroot(int x)
{
return lc(fa[x])==x||rc(fa[x])==x;
}
inline void reverse(int x)
{
std::swap(lc(x),rc(x));
rev[x]^=1;
}
inline void pushup(int x)
{
Mx[x]=val[x];id[x]=x;
if(Mx[lc(x)]>Mx[x])Mx[x]=Mx[lc(x)],id[x]=id[lc(x)];
if(Mx[rc(x)]>Mx[x])Mx[x]=Mx[rc(x)],id[x]=id[rc(x)];
}
inline void pushdown(int x)
{
if(rev[x])
{
if(lc(x))reverse(lc(x));
if(rc(x))reverse(rc(x));
rev[x]=0;
}
}
inline void rotate(int x)
{
int f=fa[x],p=fa[f],c=(rc(f)==x);
if(nroot(f))ch[p][rc(p)==f]=x;
fa[ch[f][c]=ch[x][c^1]]=f;
fa[ch[x][c^1]=f]=x;
fa[x]=p;
pushup(f);
pushup(x);
}
inline void splay(int x)
{
cnt=0;
stack[++cnt]=x;
for(register int i=x;nroot(i);i=fa[i])stack[++cnt]=fa[i];
while(cnt)pushdown(stack[cnt--]);
for(register int y=fa[x];nroot(x);rotate(x),y=fa[x])
if(nroot(y))rotate((lc(y)==x)==(lc(fa[y])==y)?y:x);
pushup(x);
}
inline void access(int x)
{
for(register int y=0;x;x=fa[y=x])splay(x),rc(x)=y,pushup(x);
}
inline int findroot(int x)
{
access(x);splay(x);
while(lc(x))pushdown(x),x=lc(x);
splay(x);
return x;
}
inline void makeroot(int x)
{
access(x);splay(x);reverse(x);
}
inline void split(int x,int y)
{
makeroot(x);access(y);splay(y);
}
inline void link(int x,int y)
{
makeroot(x);
if(findroot(y)!=x)fa[x]=y;
}
inline void cut(int x,int y)
{
makeroot(x);
if(findroot(y)==x&&fa[y]==x&&!rc(y))fa[y]=lc(x)=0,pushup(x);
}
};
LCT T;
#undef lc
#undef rc
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int found(int x)
{
if(fa[x]!=x)fa[x]=found(fa[x]);
return fa[x];
}
int main()
{
read(n);read(m);
for(register int i=1;i<=n;++i)fa[i]=i;
for(register int i=1;i<=m;++i)read(side[i].u),read(side[i].v),read(side[i].w);
int dn=0;
std::sort(side+1,side+m+1);
for(register int i=1;i<=m;++i)
{
int x=found(side[i].u),y=found(side[i].v),sn=n+i;
if(x!=y)
{
fa[x]=y;
T.val[sn]=side[i].w;
T.link(sn,side[i].u),T.link(sn,side[i].v);
in[i]=1;
dn++;
}
else
{
if(side[i].u==side[i].v)continue;
T.split(side[i].u,side[i].v);
int so=T.id[side[i].v];
if(side[i].w<T.Mx[side[i].v])
{
T.val[sn]=side[i].w;
T.cut(so,side[so-n].u);T.cut(so,side[so-n].v);
in[so-n]=0;
T.link(sn,side[i].u);T.link(sn,side[i].v);
in[i]=1;
}
}
if(dn==n-1)
{
while(!in[ip])ip++;
T.split(side[i].u,side[i].v);
chkmin(ans,side[ip].w-side[i].w);
}
}
write(ans,'\n');
return 0;
}
【刷题】洛谷 P4234 最小差值生成树的更多相关文章
- 洛谷P4234 最小差值生成树(LCT,生成树)
洛谷题目传送门 和魔法森林有点像,都是动态维护最小生成树(可参考一下Blog的LCT总结相关部分) 至于从小到大还是从大到小当然无所谓啦,我是从小到大排序,每次枚举边,还没连通就连,已连通就替换环上最 ...
- [洛谷P4234] 最小差值生成树
题目类型:\(LCT\)动态维护最小生成树 传送门:>Here< 题意:求一棵生成树,其最大边权减最小边权最小 解题思路 和魔法森林非常像.先对所有边进行排序,每次加边的时候删除环上的最小 ...
- 洛谷P4234 最小差值生成树(lct动态维护最小生成树)
题目描述 给定一个标号为从 11 到 nn 的.有 mm 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式: 第一行两个数 n, mn,m ,表示图的点和边的数量. ...
- 洛谷 P4234 最小差值生成树(LCT)
题面 luogu 题解 LCT 动态树Link-cut tree(LCT)总结 考虑先按边权排序,从小到大加边 如果构成一颗树了,就更新答案 当加入一条边,会形成环. 贪心地想,我们要最大边权-最小边 ...
- 洛谷.4234.最小差值生成树(LCT)
题目链接 先将边排序,这样就可以按从小到大的顺序维护生成树,枚举到一条未连通的边就连上,已连通则(用当前更大的)替换掉路径上最小的边,这样一定不会更差. 每次构成树时更新答案.答案就是当前边减去生成树 ...
- 洛谷4234最小差值生成树 (LCT维护生成树)
这也是一道LCT维护生成树的题. 那么我们还是按照套路,先对边进行排序,然后顺次加入. 不过和别的题有所不同的是: 在本题中,我们需要保证LCT中正好有\(n-1\)条边的时候,才能更新\(ans\) ...
- P4234 最小差值生成树
题目 P4234 最小差值生成树 做法 和这题解法差不多,稍微变了一点,还不懂就直接看代码吧 \(update(2019.2):\)还是具体说一下吧,排序,直接加入,到了成环情况下,显然我们要把此边代 ...
- P4234 最小差值生成树 LCT维护边权
\(\color{#0066ff}{ 题目描述 }\) 给定一个标号为从 \(1\) 到 \(n\) 的.有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树. \(\color{#0 ...
- 【Luogu】P4234最小差值生成树(LCT)
题目链接 能把LCT打得每个函数都恰有一个错误也是挺令我惊讶的. 本题使用LCT维护生成树,具体做法是对原图中的每个边建一个点,然后连边的时候相当于是将边的起点跟“边”这个点连起来,边的终点也跟它连起 ...
随机推荐
- 17-使用公共 Registry
Docker Hub 是 Docker 公司维护的公共 Registry.用户可以将自己的镜像保存到 Docker Hub 免费的 repository 中.如果不希望别人访问自己的镜像,也可以购买私 ...
- POJ2251-Dungeon Master(3维BFS)
You are trapped in a 3D dungeon and need to find the quickest way out! The dungeon is composed of un ...
- NO--19 微信小程序之scroll-view选项卡与跳转(二)
本篇为大家介绍为何我们在最后做交互的时候,并没有使用上一篇讲的选项卡的效果. scroll-view与跳转.gif (如无法查看图片,还请翻看上一篇!) 大家注意看,在我点击跳转后,首先能看到的是 ...
- 从零开始的Python学习Episode 19——面向对象(2)
面向对象之继承 继承是一种创建新类的方式,新建的类可以继承一个或多个父类(python支持多继承),父类又可称 为基类或超类,新建的类称为派生类或子类. 子类会“”遗传”父类的属性,从而解决代码重用问 ...
- Spring MVC controller的方法返回值
ModeAndView 可以在构造时确定需要跳转的页面也可以通过setViewName方法来确定需要跳转的页面 String 指定返回页面的视图名称,页面跳转,如果加了@ResponseBody注解, ...
- [buaa-SE-2017]个人作业-Week1
个人作业-Week1 Part1:教材中不懂的问题 1.根据书中"除了前20的学校之外,计科和软工没有区别"所以计算机科学这个专业也许在我们学校是和软件工程有区别的,但是可以料想的 ...
- OO学习第一阶段总结
前言 虽然之前接触过java,也写过一些1000行左右的程序.可以说面向对象的思想和java的一些基本语法对我来说是没有难度的,但是这学期的面向对象依然给了我一个下马威.这几次的作业每次都很让我头疼. ...
- mysql 修改语句及耗时
1.含有某串字母的字段替换: update imagetable set imageID = replace(imageID, 'ZH0211001', 'ZH4111001') 只要imageID含 ...
- NABCD(校园包车)
广州商学院包车 N(need) 各个高校包车需求量大,然而校园内包车信息太散乱,售票地点不确定,有些老师.学生特别是新生,甚至不知有校园包车这一回事, 随着信息网络的发展,为了给师生带来校园更多的方便 ...
- 【Coursera】线性回归和逻辑回归
一.线性回归 1.批量梯度下降法 每次对参数进行一次迭代时,都要扫描一遍输入全集 算法可以收敛到局部最优值 当迭代多次之后,每次迭代参数的改变越小 2.随机梯度下降法 对于一个输入样本,对参数进行一次 ...