转载请注明出处:http://blog.csdn.net/u012860063?viewmode=contents

题目链接:http://codeforces.com/problemset/problem/445/B

----------------------------------------------------------------------------------------------------------------------------------------------------------
欢迎光临天资小屋http://user.qzone.qq.com/593830943/main

----------------------------------------------------------------------------------------------------------------------------------------------------------

DZY loves chemistry, and he enjoys mixing chemicals.

DZY has n chemicals, and m pairs of them will react.
He wants to pour these chemicals into a test tube, and he needs to pour them in one by one, in any order.

Let's consider the danger of a test tube. Danger of an empty test tube is 1. And every time when DZY pours a chemical, if there are already one or more chemicals
in the test tube that can react with it, the danger of the test tube will be multiplied by 2. Otherwise the danger remains as it is.

Find the maximum possible danger after pouring all the chemicals one by one in optimal order.

Input

The first line contains two space-separated integers n and m .

Each of the next m lines contains two space-separated integers xi and yi (1 ≤ xi < yi ≤ n).
These integers mean that the chemical xi will
react with the chemical yi.
Each pair of chemicals will appear at most once in the input.

Consider all the chemicals numbered from 1 to n in some order.

Output

Print a single integer — the maximum possible danger.

Sample test(s)
input
1 0
output
1
input
2 1
1 2
output
2
input
3 2
1 2
2 3
output
4
Note

In the first sample, there's only one way to pour, and the danger won't increase.

In the second sample, no matter we pour the 1st chemical first, or pour the 2nd
chemical first, the answer is always 2.

In the third sample, there are four ways to achieve the maximum possible danger: 2-1-3, 2-3-1, 1-2-3 and 3-2-1 (that is the numbers of the chemicals in order of pouring).

代码例如以下:

#include <cstdio>
#include <cmath>
int father[1005];
int find(int x)
{
return x==father[x]?x:father[x]=find(father[x]);
}
void Union(int x,int y)
{
int f1=find(x);
int f2=find(y);
if(f1!=f2)
{
father[f2]=f1;
}
}
int main()
{
int n,m,a,b;
int i, j;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(i = 1 ; i <=n ; i++ )
father[i] = i ;
if(m == 0)
{
printf("1\n");
continue;
}
int k=0;
for(i = 0 ; i < m ; i++ )
{
scanf("%d%d",&a,&b);
Union(a,b);
}
__int64 msum = 1;
for(i=1 ; i <= n ; i++)
if(father[i]==i)
k++;
int ans = n - k;
msum = pow(2,ans);
printf("%I64d\n",msum);
}
return 0 ;
}

CodeForces 445B. DZY Loves Chemistry(并查集)的更多相关文章

  1. CodeForces 445B DZY Loves Chemistry

    DZY Loves Chemistry Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64 ...

  2. CodeForces 445B DZY Loves Chemistry (并查集)

    题意: 有N种药剂编号 1 ~ N,然后有M种反应关系,这里有一个试管,开始时危险系数为 1,每当放入的药剂和瓶子里面的药剂发生反应时危险系数会乘以2,否则就不变,给出N个药剂和M种反应关系,求最大的 ...

  3. codeforces 445B. DZY Loves Chemistry 解题报告

    题目链接:http://codeforces.com/problemset/problem/445/B 题目意思:给出 n 种chemicals,当中有 m 对可以发生反应.我们用danger来评估这 ...

  4. UOJ_14_【UER #1】DZY Loves Graph_并查集

    UOJ_14_[UER #1]DZY Loves Graph_并查集 题面:http://uoj.ac/problem/14 考虑只有前两个操作怎么做. 每次删除一定是从后往前删,并且被删的边如果不是 ...

  5. CF 445B DZY Loves Chemistry(并查集)

    题目链接: 传送门 DZY Loves Chemistry time limit per test:1 second     memory limit per test:256 megabytes D ...

  6. CodeForces - 445B - DZY Loves Chemistry-转化问题

    传送门:http://codeforces.com/problemset/problem/445/B 参考:https://blog.csdn.net/littlewhite520/article/d ...

  7. UOJ14 DZY Loves Graph 并查集

    传送门 题意:给出一张$N$个点,最开始没有边的图,$M$次操作,操作为加入边(边权为当前的操作编号).删除前$K$大边.撤销前一次操作,每一次操作后询问最小生成树边权和.$N \leq 3 \tim ...

  8. cf444E. DZY Loves Planting(并查集)

    题意 题目链接 Sol 神仙题啊Orzzzzzz 考场上的时候直接把树扔了对着式子想,想1h都没得到啥有用的结论. 然后cf正解居然是网络流??出给NOIP模拟赛T1???¥%--&((--% ...

  9. Codeforces Round #254 (Div. 2)B. DZY Loves Chemistry

    B. DZY Loves Chemistry time limit per test 1 second memory limit per test 256 megabytes input standa ...

随机推荐

  1. javascript+JQuery实现返回顶部功能

    很多网站上都有返回顶部的效果,本文阐述如何使用jquery实现返回顶部按钮. 首先需要在顶部添加如下html元素: <p id="back-to-top"><a ...

  2. 远程訪问路由器下的mac os(ssh+vnc)

    需求: 使用能够上网的外网pc(win7操作系统).远程訪问公网tp-link下的的mac电脑 环境: mac os -----tp-link-----------pc 工具: putty   Tig ...

  3. Spark RDD关联操作小结

    前言 Spark的rdd之间的关系需要通过一些特定的操作来实现, 操作比较多也,特别是一堆JOIN也挺容易让人产生混乱的. 因此做了下小结梳理一下. 准备数据 var rdd1 = sc.makeRD ...

  4. Oracle Agile PLM Web Services 的实现

    Oracle 的产品Agile PLM内置了许多Web Services,其他系统可以通过Web Servcies实现对Agile PLM系统资源的访问.快速学会使用的方法,是去Oracle的官网下载 ...

  5. 数字签名算法(C#)

    public static string GetSHA1Method(string strSource) { string strResult = ""; //Create Sys ...

  6. YII插件

    dropDownList: Yii中可以采用CHtml类来实现,也可以用CActiveForm来实现.一.用CHtml来实现.VIEW中实现: <?php echo CHtml::dropDow ...

  7. Shader Object及Program操作API

    Shader Object及Program操作API Program:  1. GLuint glCreateProgram( void );//创建 2. void glDeleteProgram( ...

  8. 队列实例程序(C语言)

    /* queue.h */ #ifndef _QUEUE_H #define _QUEUE_H struct queue_record; typedef struct queue_record *qu ...

  9. MISRA-C++ 2008

  10. 关闭xp防火墙

    在控制面版关闭防火墙 禁用“Security Center”服务 禁用“WindowsFirewall/InternetConnectionSharing(ICS)”服务 删除服务:开始运行CMD,命 ...