Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.  For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.  You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively.  Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10 3.  For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2.  Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 10 4

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

题目意思:有n种货币,货币之间按照汇率交换,当然还要花费一些手续费,货币交换是可以多次重复进行的,问有没有可能经过一系列的货币交换,开始的货币会增加?
当你用100A币交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。
解题思路:这道题可以抽象为图论中的题,将货币种类看为点,货币之间的交换看为有向边,想要货币的金额产生增加,那么必然要有正权回路,即在一条回路上能够一直松弛下去。该题的问题主要在于所给的参数很多,第一行给出了n种货币有m种交换方式,给你第s种货币有V的金额,对于m种的交换方式,从x到y需要汇率rate和手续费commission,从y到x也需要这两个参数。同时这里的松弛递推公式也要发生变化:
            if(dist[edge[i].t]<(dist[edge[i].f]-edge[i].c)*edge[i].r)
{
dist[edge[i].t]=(dist[edge[i].f]-edge[i].c)*edge[i].r;
}
因为是需要增加的正权回路,所以如果小于就松弛。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define inf 0x3f3f3f3f
struct Edge
{
int f;
int t;
double r;
double c;
} edge[];
double dist[];
int n,m,s,cnt;
double x;
int bellman_ford()
{
int i,j;
int flag;
for(i=; i<=n; i++)
{
dist[i]=;
}
dist[s]=x;
for(j=; j<=n; j++)
{
flag=;
for(i=; i<=cnt; i++)
{
if(dist[edge[i].t]<(dist[edge[i].f]-edge[i].c)*edge[i].r)
{
dist[edge[i].t]=(dist[edge[i].f]-edge[i].c)*edge[i].r;
flag=;
}
}
if(flag==)
{
break;
}
}
return flag;
}
int main()
{
int i,t;
int u,v;
double a1,a2,b1,b2;
while(scanf("%d%d%d%lf",&n,&m,&s,&x)!=EOF)
{
cnt=;
while(m--)
{
scanf("%d%d%lf%lf%lf%lf",&u,&v,&a1,&b1,&a2,&b2);
edge[cnt].f=u;
edge[cnt].t=v;
edge[cnt].r=a1;
edge[cnt++].c=b1;
edge[cnt].f=v;
edge[cnt].t=u;
edge[cnt].r=a2;
edge[cnt++].c=b2;
}
if(bellman_ford())
{
printf("YES\n");
}
else
{
printf("NO\n");
}
}
return ;
}

附上使用SPFA的代码

#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxs = 1e3+;
int n,m;
struct Edge
{
int to;
double rate;
double com;
} ;
double dis[maxs];
int vis[maxs];
int cnt[maxs];///用来记录入队列次数
vector<Edge>maps[maxs];
void AddEdge(int u,int v,double r,double co)
{
Edge t;
t.to=v;
t.rate=r;
t.com=co;
maps[u].push_back(t);
}
int SPFA(int s, double v)
{
int i;
memset(dis,,sizeof());
memset(vis,,sizeof());
memset(cnt,,sizeof());
queue<int>q;
dis[s]=v;
vis[s]=;
cnt[s]++;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=;
for(i=; i<maps[u].size(); i++)
{
int to=maps[u][i].to;
double com=maps[u][i].com;
double rate=maps[u][i].rate;
if(dis[to]<(dis[u]-com)*rate)
{
dis[to]=(dis[u]-com)*rate;
if(!vis[to])
{
vis[to]=;
cnt[to]++;
if(cnt[to]>=n)
{
return ;
}
q.push(to);
}
}
}
}
return ;
}
int main()
{
int s,i;
double k;
while(scanf("%d%d%d%lf",&n,&m,&s,&k)!=EOF)
{
int a,b;
double c,d,e,f;
while(m--)
{
scanf("%d%d%lf%lf%lf%lf",&a,&b,&c,&d,&e,&f);
AddEdge(a,b,c,d);
AddEdge(b,a,e,f);
}
if(SPFA(s,k))
{
puts("YES");
}
else
{
puts("NO");
}
}
return ;
}


Currency Exchange 货币兑换 Bellman-Ford SPFA 判正权回路的更多相关文章

  1. poj 1860 Currency Exchange (SPFA、正权回路 bellman-ford)

    链接:poj 1860 题意:给定n中货币.以及它们之间的税率.A货币转化为B货币的公式为 B=(V-Cab)*Rab,当中V为A的货币量, 求货币S通过若干此转换,再转换为原本的货币时是否会添加 分 ...

  2. Currency Exchange POJ - 1860 (spfa判断正环)

    Several currency exchange points are working in our city. Let us suppose that each point specializes ...

  3. POJ1680 Currency Exchange SPFA判正环

    转载来源:優YoU  http://user.qzone.qq.com/289065406/blog/1299337940 提示:关键在于反向利用Bellman-Ford算法 题目大意 有多种汇币,汇 ...

  4. 图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 19881   Accepted: 711 ...

  5. POJ 1860 Currency Exchange(最短路&spfa正权回路)题解

    题意:n种钱,m种汇率转换,若ab汇率p,手续费q,则b=(a-q)*p,你有第s种钱v数量,问你能不能通过转化让你的s种钱变多? 思路:因为过程中可能有负权值,用spfa.求是否有正权回路,dis[ ...

  6. POJ1860-Currency Exchange (正权回路)【Bellman-Ford】

    <题目链接> <转载于 >>> > 题目大意: 有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0. ...

  7. HDU - 1317 ~ SPFA正权回路的判断

    题意:有最多一百个房间,房间之间连通,到达另一个房间会消耗能量值或者增加能量值,求是否能从一号房间到达n号房间. 看数据,有定5个房间,下面有5行,第 iii 行代表 iii 号 房间的信息,第一个数 ...

  8. Bellman_ford货币兑换——正权回路判断

    POJ1860 题目大意:你在某一点有一些钱,给定你两点之间钱得兑换规则,问你有没有办法使你手里的钱增多.就是想看看转一圈我的钱能不能增多,出现这一点得条件就是有兑换钱得正权回路,所以选择用bellm ...

  9. [ACM] hdu 1217 Arbitrage (bellman_ford最短路,推断是否有正权回路或Floyed)

    Arbitrage Problem Description Arbitrage is the use of discrepancies in currency exchange rates to tr ...

随机推荐

  1. java集合---迭代器iterator

    一:ArraryList  最终继承超级接口Collection,Colection接口继承Iterator接口. public interface Collection<E> exten ...

  2. expdp导出时报错ora-16000

    一.问题现象:在对数据库进行expdp导出时发生报错ora-16000,脚本如下: nohup expdp "'/ as sysdba'" schemas=shp DIRECTOR ...

  3. Scala(二):元组、数组、映射

    元组:Tuple,不同类型值的聚集.将固定数量的项目组合在一起,以便它们可以作为一个整体传递. 与数组或列表不同,元组可以容纳不同类型的对象,但它们也是不可变的.元祖的实际类型取决于它的分量的类型,比 ...

  4. Word里面怎么取消全文每个标题前面都有的这个点

    Word里标题前面的那个点,如图1所示看起来觉得很不舒服,该怎么把它取消呢?(本测试环境是Win 10 64位系统,Microsoft Office家庭和学生版 2016) 图1 选中所有标题,如图2 ...

  5. Tomcat7 新的数据库连接池Tomcat jdbc pool介绍和配置

    Tomcat 在 7.0 以前的版本都是使用commons-dbcp做为连接池的实现,但是 dbcp存在一些问题: (1)dbcp 是单线程的,为了保证线程安全会锁整个连接池 (2)dbcp 性能不佳 ...

  6. 【转载】MSXML应用总结 开发篇(下)

    原文:http://blog.sina.com.cn/s/blog_48f93b530100eq4b.html 三.查询XML文档节点 这部分属于“读”XML文档并做节点遍历,由于担心加上实例会占用过 ...

  7. PKUWC2019题解

    这里其实只放一下题面和一些提示,大家评一评有几道题可做 题面全部蒯自xzz的博客 Day 1 T1 题面 一个有向图,每一条边可能存在也可能不存在,求拓扑序列数量的期望乘\(2^m\) 没有重边自环, ...

  8. let和var定义变量的区别

    使用 let 语句声明一个变量,该变量的范围限于声明它的块中.  可以在声明变量时为变量赋值,也可以稍后在脚本中给变量赋值. 使用 let 声明的变量,在声明前无法使用,否则将会导致错误. 如果未在  ...

  9. NGUI可展开列表的实现

    本文来自网易云社区 作者:汪毅军 最近使用了NGUI做了下可展开列表,其主要思路如下:首先最外层使用Scroll view以达到滑动效果,然后列表使用UITable进行排列,最后通过点击Item控制I ...

  10. Django + Ansible 主机管理(有源码)

    本文给大家介绍如何利用 Django + Ansible 进行 Web 项目管理.   Django介绍 一个可以使 Web 开发工作愉快并且高效的 Web 开发框架,能够以最小的代价构建和维护高质量 ...