【SHOI2016】黑暗前的幻想乡
题面
题解
如果没有建筑公司的限制,那么就是个\(\mathrm{Matrix\;tree}\)板子
其实有了也一样
发现\(n\leq 17\),考虑容斥
每次钦定一些建筑公司,计算它们包含的边的生成树的方案数
复杂度\(\mathrm{O}(2^nn^3)\)
代码
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define clear(x, y) memset(x, y, sizeof(x))
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int N(20), Mod(1e9 + 7);
int n, a[N][N], m[N], popcnt[1 << 17], ans;
int U[N][N * N], V[N][N * N];
int solve(int S)
{
for(RG int i = 1; i <= n; i++)
for(RG int j = 1; j <= n; j++)
a[i][j] = 0;
for(RG int i = 1; i < n; i++)
if(S & (1 << (i - 1))) for(RG int j = 1; j <= m[i]; j++)
{
int x = U[i][j], y = V[i][j];
++a[x][x], ++a[y][y], --a[y][x], --a[x][y];
}
for(RG int i = 1; i <= n; i++)
for(RG int j = 1; j <= n; j++)
a[i][j] = (a[i][j] + Mod) % Mod;
int ans = 1;
for(RG int i = 2; i <= n; i++)
{
for(RG int j = i + 1; j <= n; j++)
while(a[j][i])
{
int t = a[i][i] / a[j][i];
for(RG int k = i; k <= n; k++)
a[i][k] = (a[i][k] - 1ll * a[j][k] * t % Mod + Mod) % Mod,
std::swap(a[i][k], a[j][k]);
ans = Mod - ans;
}
ans = 1ll * ans * a[i][i] % Mod;
}
return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
file(cpp);
#endif
n = read();
for(RG int i = 1; i < n; i++)
{
m[i] = read();
for(RG int j = 1; j <= m[i]; j++)
U[i][j] = read(), V[i][j] = read();
}
for(RG int i = 0; i < 1 << (n - 1); i++)
popcnt[i] = popcnt[i >> 1] + (i & 1);
for(RG int i = 0; i < 1 << (n - 1); i++)
ans = (ans + (((n - 1 - popcnt[i]) & 1) ?
Mod - solve(i) : solve(i))) % Mod;
printf("%d\n", ans);
return 0;
}
【SHOI2016】黑暗前的幻想乡的更多相关文章
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 464 Solved: 264[Submit][Sta ...
- [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)
这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...
- P4336 [SHOI2016]黑暗前的幻想乡
P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...
- 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description ...
- 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理
[BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...
- bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)
bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...
- BZOJ4596: [Shoi2016]黑暗前的幻想乡
Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖 怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类) 博丽灵梦和八云紫等人整日高谈所有妖怪 ...
- [SHOI2016]黑暗前的幻想乡
Description 四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖 怪涌入了幻想乡,扰乱了幻想乡昔日的秩序.但是幻想乡的建制派妖怪(人类) 博丽灵梦和八云紫等人整日高谈所有妖怪 ...
- BZOJ4596:[SHOI2016]黑暗前的幻想乡——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4596 https://www.luogu.org/problemnew/show/P4336#su ...
随机推荐
- [VS2008] [.NET 3.5] 如何解决 The imported project "C:\Windows\Microsoft.NET\Framework\v3.5\Microsoft.CompactFramework.CSharp.targets" was not found
重新安装或者修复 NETCFv35PowerToys https://download.microsoft.com/download/f/a/c/fac1342d-044d-4d88-ae97-d27 ...
- webkit、cef、nwjs、electron、 miniblink浏览器内核优缺点
市面上作为嵌入的组件的可用的浏览器内核,不外乎这几个:webkit.cef.nwjs.electron. 1.cef:优点是由于集成的chromium内核,所以对H5支持的很全,同时因为使用的人也多, ...
- Flask的数据库连接池 DBUtils
Flask是没有ORM的操作的,如果在flask中连接数据库有两种方式 一.pymysql 二.SQLAlchemy 是python操作数据库的以一个库,能够进行orm映射官网文档 sqlchemy ...
- 显示脉冲效果的PulsingView
显示脉冲效果的PulsingView 效果如下: 源码: PulsingView.h 与 PulsingView.m // // PulsingView.h // PulsingView // // ...
- mysql 8.0.11 安装(windows)
mysql本地安装(windows) 一.安装包下载 从官网下载安装包,地址:https://dev.mysql.com/downloads/mysql/ 二.配置 解压到本地,然后在目录下新建my. ...
- Google, Facebook, Amazon and Microsoft Salaries
https://blog.step.com/2016/04/08/an-open-source-project-for-tech-salaries/ Step.com Crowdsource your ...
- IP地址分类/IP地址10开头和172开头和192开头的区别/判断是否同一网段(A、B、C三类地址)【转】
简单来说在公司或企业内部看到的就基本都是内网IP,ABC三类IP地址里的常见IP段. 每个IP地址都包含两部分,即网络号和主机号. InterNIC将IP地址分为五类:A类保留给ZF或大型企业,B类分 ...
- 制作MacOS 系统启动盘
1,首先需要在一台有MacOS系统,在Apple stroe下载MacOS High Sierra安装程序: 2,准备一个至少8G容量的U盘: 3,打开 “应用程序 → 实用工具 → 磁盘工具”,将U ...
- js实现svg图形转存为图片下载[转]
我们知道canvas画布可以很方便的js原生支持转为图片格式并下载,但是svg矢量图形则并没有这方面原生的支持.研究过HighChart的svg图形的图片下载机制,其实现原理大体是浏览器端收集SVG代 ...
- 新手学Linux:在VMware14中安装CentOS7详细教程
VMware Workstation14安装CentOS7.0 详情教程 1.准备工作 a)下载VMware workstation14 b)下载CentOS7 c)下载SSH Secure Shel ...