Densely Connected Convolutional Networks 论文阅读
毕设终于告一段落,传统方法的视觉做得我整个人都很奔溃,终于结束,可以看些搁置很久的一些论文了,嘤嘤嘤
Densely Connected Convolutional Networks 其实很早就出来了,cvpr 2017 best paper
觉得读论文前,还是把dense net的整个网络结构放到http://ethereon.github.io/netscope/#/editor 上面可视化看一下,会更加容易理解,总体这篇论文很好理解
上图是一个5层的dense block,每个dense block的growth rate k=4
论文开头给出了densnet的几个优点:
1、Our proposed DenseNet architecture explicitly differentiates between information that is added to the network and information that is preserved.DenseNet layers are very narrow (e.g., 12 filters per layer),adding only a small set of feature-maps to the “collective knowledge” of the network and keep the remaining featuremaps
unchanged—and the final classifier makes a decision based on all feature-maps in the network
densnet 网络结构参数少,每个block里面的filter也比较少,而我们在使用alexnet,通常filter都是上百的,而这里的filter 12、24、16 等,所以非常narrow
2、one big advantage of DenseNets is their improved flow of information and gradients throughout the network, which makes them easy to train.
densenet网络从上图中可以看出,每层都和后面的层相连,(第一幅图没有画出来每个block中的层之间的连接,觉得应该结合第一个图和第二个图,才算完整,因为第二个图每个block后面的输入是前面所有层concat一起的结果,相当于图一显示的那样。。。。在可视化工具里面看,最明显了,而且还能看到每一层的实际大小)有利于信息和梯度在整个网络中的传递。
3、we also observe that dense connections have a regularizing effect, which reduces overfitting on tasks with smaller training set sizes.
同时densenet网络也有正则化的作用,在小数据集上训练也能减少过拟合的风险
densenet中是将前面几层concat一起,而resnet是求和,论文中提到这种求和会影响信息在网络中的传递
transition layers:
这层就是连接两个block之间的层,由BN层,1x1 卷积层和2x2的avg pooling层构成,如下图所示
Growth rate:
也就是每个block里面的层数,如图一中,每个block里面有4层,所以growth rate=4
Botttleneck layers:
It has been noted in [36, 11] that a 1X1 convolution can be introduced as bottleneck layer before each 3X3 convolution to reduce the number of input feature-maps, and thus to improve computational efficiency.
是指每一层中在3X3卷积核前面有个1X1的卷积核,作用是减少输入feature-map的数量,如下图所示,512的数量变成了128个
Compression:
If a dense block contains m feature-maps, we let the following transition layer generate [θm] output featuremaps,where 0<θ <=1referred to as the compression factor.
让transition layer压缩block输出的feature map数量。
Densely Connected Convolutional Networks 论文阅读的更多相关文章
- 【Network Architecture】Densely Connected Convolutional Networks 论文解析
目录 0. Paper link 1. Overview 2. DenseNet Architecture 2.1 Analogy to ResNet 2.2 Composite function 2 ...
- 深度学习论文翻译解析(十五):Densely Connected Convolutional Networks
论文标题:Densely Connected Convolutional Networks 论文作者:Gao Huang Zhuang Liu Laurens van der Maaten Kili ...
- Deep Learning 33:读论文“Densely Connected Convolutional Networks”-------DenseNet 简单理解
一.读前说明 1.论文"Densely Connected Convolutional Networks"是现在为止效果最好的CNN架构,比Resnet还好,有必要学习一下它为什么 ...
- Paper | Densely Connected Convolutional Networks
目录 黄高老师190919在北航的报告听后感 故事背景 网络结构 Dense block DenseNet 过渡层 成长率 瓶颈层 细节 实验 发表在2017 CVPR. 摘要 Recent work ...
- Densely Connected Convolutional Networks(緊密相連卷積網絡)
- Dense blocks where each layer is connected to every other layer in feedforward fashion(緊密塊是指每一個層與每 ...
- DenseNet——Densely Connected Convolutional Networks
1. 摘要 传统的 L 层神经网络只有 L 个连接,DenseNet 的结构则有 L(L+1)/2 个连接,每一层都和前面的所有层进行连接,所以称之为密集连接的网络. 针对每一层网络,其前面所有层的特 ...
- 【文献阅读】Densely Connected Convolutional Networks-best paper-CVPR-2017
Densely Connected Convolutional Networks,CVPR-2017-best paper之一(共两篇,另外一篇是apple关于GAN的paper),早在去年八月 De ...
- Visualizing and Understanding Convolutional Networks论文复现笔记
目录 Visualizing and Understanding Convolutional Networks 论文复现笔记 Abstract Introduction Approach Visual ...
- 【Detection】R-FCN: Object Detection via Region-based Fully Convolutional Networks论文分析
目录 0. Paper link 1. Overview 2. position-sensitive score maps 2.1 Background 2.2 position-sensitive ...
随机推荐
- 【bzoj2594】 Wc2006—水管局长数据加强版
http://www.lydsy.com/JudgeOnline/problem.php?id=2594 (题目链接) 题意 给出一个带边权的无向简单,要求维护两个操作,删除${u,v}$之间的连边: ...
- 项目管理---git----遇到问题------.gitignore不起作用
情况 在管理一个版本库时,有时候不想要管理某些文件,这个时候我就把这个问价写到.gitignore文件中,这样应该就可以将这个文件忽略,不再进行·版本管理了,但是经常出现的情况是:将这些文件名写到其中 ...
- BZOJ 4802 欧拉函数
4802: 欧拉函数 Description 已知N,求phi(N) Input 正整数N.N<=10^18 Output 输出phi(N) Sample Input 8 Sample Outp ...
- 团体程序设计天梯赛 L2-016. 愿天下有情人都是失散多年的兄妹
同时也要记录父母的性别,输出询问时要用到 #include <stdio.h> #include <stdlib.h> #include <string.h> #i ...
- pyqt5的代码
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- Java基础-IO流对象之打印流(PrintStream与PrintWriter)
Java基础-IO流对象之打印流(PrintStream与PrintWriter) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.打印流的特性 打印对象有两个,即字节打印流(P ...
- [Java] 理解JVM之三:垃圾回收机制
JVM内存中的各个区域都会回收吗? 首先我们知道 Java 栈和本地方法栈在方法执行完成后对应的栈帧就立刻出栈销毁,两者的回收率可以认为是100%:Java 堆中的对象在没有被引用后,即使用完成后会被 ...
- Nlog写日志到数据库
https://github.com/nlog/NLog/wiki/Database-Target
- bzoj千题计划173:bzoj1257: [CQOI2007]余数之和sum
http://www.lydsy.com/JudgeOnline/problem.php?id=1257 k%i=k-int(k/i)*i 除法分块,对于相同的k/i用等差序列求和来做 #includ ...
- 把数组存入到cookie中
$arr = array(1,2,3); // 把数组序列化之后,存入到cookie中 $arr_str = serialize($arr); // 序列化数组 setcookie('a',$arr_ ...