毕设终于告一段落,传统方法的视觉做得我整个人都很奔溃,终于结束,可以看些搁置很久的一些论文了,嘤嘤嘤

Densely Connected Convolutional Networks 其实很早就出来了,cvpr 2017 best paper

觉得读论文前,还是把dense net的整个网络结构放到http://ethereon.github.io/netscope/#/editor 上面可视化看一下,会更加容易理解,总体这篇论文很好理解

上图是一个5层的dense block,每个dense block的growth rate k=4

论文开头给出了densnet的几个优点:

1、Our proposed DenseNet architecture explicitly differentiates between information that is added to the network and information that is preserved.DenseNet layers are very narrow (e.g., 12 filters per layer),adding only a small set of feature-maps to the “collective knowledge” of the network and keep the remaining featuremaps
unchanged—and the final classifier makes a decision based on all feature-maps in the network

densnet 网络结构参数少,每个block里面的filter也比较少,而我们在使用alexnet,通常filter都是上百的,而这里的filter 12、24、16 等,所以非常narrow

2、one big advantage of DenseNets is their improved flow of information and gradients throughout the network, which makes them easy to train.

densenet网络从上图中可以看出,每层都和后面的层相连,(第一幅图没有画出来每个block中的层之间的连接,觉得应该结合第一个图和第二个图,才算完整,因为第二个图每个block后面的输入是前面所有层concat一起的结果,相当于图一显示的那样。。。。在可视化工具里面看,最明显了,而且还能看到每一层的实际大小)有利于信息和梯度在整个网络中的传递。

3、we also observe that dense connections have a regularizing effect, which reduces overfitting on tasks with smaller training set sizes.

同时densenet网络也有正则化的作用,在小数据集上训练也能减少过拟合的风险

densenet中是将前面几层concat一起,而resnet是求和,论文中提到这种求和会影响信息在网络中的传递

transition layers:

这层就是连接两个block之间的层,由BN层,1x1 卷积层和2x2的avg pooling层构成,如下图所示

Growth rate:

也就是每个block里面的层数,如图一中,每个block里面有4层,所以growth rate=4

Botttleneck layers:

It has been noted in [36, 11] that a 1X1 convolution can be introduced as bottleneck layer before each 3X3 convolution to reduce the number of input feature-maps, and thus to improve computational efficiency.

 是指每一层中在3X3卷积核前面有个1X1的卷积核,作用是减少输入feature-map的数量,如下图所示,512的数量变成了128个

Compression:

If a dense block contains m feature-maps, we let the following transition layer generate  [θm] output featuremaps,where 0<θ <=1referred to as the compression factor.

让transition layer压缩block输出的feature map数量。

Densely Connected Convolutional Networks 论文阅读的更多相关文章

  1. 【Network Architecture】Densely Connected Convolutional Networks 论文解析

    目录 0. Paper link 1. Overview 2. DenseNet Architecture 2.1 Analogy to ResNet 2.2 Composite function 2 ...

  2. 深度学习论文翻译解析(十五):Densely Connected Convolutional Networks

    论文标题:Densely Connected Convolutional Networks 论文作者:Gao Huang Zhuang Liu Laurens van der Maaten  Kili ...

  3. Deep Learning 33:读论文“Densely Connected Convolutional Networks”-------DenseNet 简单理解

    一.读前说明 1.论文"Densely Connected Convolutional Networks"是现在为止效果最好的CNN架构,比Resnet还好,有必要学习一下它为什么 ...

  4. Paper | Densely Connected Convolutional Networks

    目录 黄高老师190919在北航的报告听后感 故事背景 网络结构 Dense block DenseNet 过渡层 成长率 瓶颈层 细节 实验 发表在2017 CVPR. 摘要 Recent work ...

  5. Densely Connected Convolutional Networks(緊密相連卷積網絡)

    - Dense blocks where each layer is connected to every other layer in feedforward fashion(緊密塊是指每一個層與每 ...

  6. DenseNet——Densely Connected Convolutional Networks

    1. 摘要 传统的 L 层神经网络只有 L 个连接,DenseNet 的结构则有 L(L+1)/2 个连接,每一层都和前面的所有层进行连接,所以称之为密集连接的网络. 针对每一层网络,其前面所有层的特 ...

  7. 【文献阅读】Densely Connected Convolutional Networks-best paper-CVPR-2017

    Densely Connected Convolutional Networks,CVPR-2017-best paper之一(共两篇,另外一篇是apple关于GAN的paper),早在去年八月 De ...

  8. Visualizing and Understanding Convolutional Networks论文复现笔记

    目录 Visualizing and Understanding Convolutional Networks 论文复现笔记 Abstract Introduction Approach Visual ...

  9. 【Detection】R-FCN: Object Detection via Region-based Fully Convolutional Networks论文分析

    目录 0. Paper link 1. Overview 2. position-sensitive score maps 2.1 Background 2.2 position-sensitive ...

随机推荐

  1. 【bzoj2594】 Wc2006—水管局长数据加强版

    http://www.lydsy.com/JudgeOnline/problem.php?id=2594 (题目链接) 题意 给出一个带边权的无向简单,要求维护两个操作,删除${u,v}$之间的连边: ...

  2. 项目管理---git----遇到问题------.gitignore不起作用

    情况 在管理一个版本库时,有时候不想要管理某些文件,这个时候我就把这个问价写到.gitignore文件中,这样应该就可以将这个文件忽略,不再进行·版本管理了,但是经常出现的情况是:将这些文件名写到其中 ...

  3. BZOJ 4802 欧拉函数

    4802: 欧拉函数 Description 已知N,求phi(N) Input 正整数N.N<=10^18 Output 输出phi(N) Sample Input 8 Sample Outp ...

  4. 团体程序设计天梯赛 L2-016. 愿天下有情人都是失散多年的兄妹

    同时也要记录父母的性别,输出询问时要用到 #include <stdio.h> #include <stdlib.h> #include <string.h> #i ...

  5. pyqt5的代码

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  6. Java基础-IO流对象之打印流(PrintStream与PrintWriter)

    Java基础-IO流对象之打印流(PrintStream与PrintWriter) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.打印流的特性 打印对象有两个,即字节打印流(P ...

  7. [Java] 理解JVM之三:垃圾回收机制

    JVM内存中的各个区域都会回收吗? 首先我们知道 Java 栈和本地方法栈在方法执行完成后对应的栈帧就立刻出栈销毁,两者的回收率可以认为是100%:Java 堆中的对象在没有被引用后,即使用完成后会被 ...

  8. Nlog写日志到数据库

    https://github.com/nlog/NLog/wiki/Database-Target

  9. bzoj千题计划173:bzoj1257: [CQOI2007]余数之和sum

    http://www.lydsy.com/JudgeOnline/problem.php?id=1257 k%i=k-int(k/i)*i 除法分块,对于相同的k/i用等差序列求和来做 #includ ...

  10. 把数组存入到cookie中

    $arr = array(1,2,3); // 把数组序列化之后,存入到cookie中 $arr_str = serialize($arr); // 序列化数组 setcookie('a',$arr_ ...