Closed Fences

A closed fence in the plane is a set of non-crossing, connected line segments with N corners (3 < N < 200). The corners or vertices are each distinct and are listed in counter-clockwise order in an array {xi, yi}, i in (1..N).

Every pair of adjacent vertices defines a side of the fence. Thus {xi yi xi+1 yi+1} is a side of the fence for all i in (1..N). For our purposes, N+1 = 1, so that the first and last vertices making the fence closed.

Here is a typical closed fence and a point x,y:

                         * x3,y3
x5,y5 / \
x,y * * / \
/ \ / \
/ * \
x6,y6* x4,y4 \
| \
| \
x1,y1*----------------* x2,y2

Write a program which will do the following:

  • Test an ordered list of vertices {xi,yi}, i in (1..N) to see if the array is a valid fence.
  • Find the set of fence sides that a person (with no height) who is standing in the plane at position (x,y) can "see" when looking at the fence. The location x,y may fall anywhere not on the fence.

A fence side can be seen if there exists a ray that connects (x,y) and any point on the side, and the ray does not intersect any other side of the fence. A side that is parallel to the line of sight is not considered visible. In the figure, above the segments x3,y3-x4,y4; x5,y5-x6,y6; and x6-y6-x1,y1 are visible or partially visible from x,y.

PROGRAM NAME: fence4

INPUT FORMAT

Line 1: N, the number of corners in the fence
Line 2: Two space-separated integers, x and y, that are the location of the observer. Both integers will fit into 16 bits.
Line 3-N+2: A pair of space-separated integers denoting the X,Y location of the corner. The pairs are given in counterclockwise order. Both integers are no larger than 1000 in magnitude.

NOTE: I have added a new test case #12 for this task. Let me know if you think it's wrong. Rob Be sure to include USACO in your mail subject!

SAMPLE INPUT (file fence4.in)

13
5 5
0 0
7 0
5 2
7 5
5 7
3 5
4 9
1 8
2 5
0 9
-2 7
0 3
-3 1

OUTPUT FORMAT

If the sequence is not a valid fence, the output is a single line containing the word "NOFENCE".

Otherwise, the output is a listing of visible fence segments, one per line, shown as four space-separated integers that represent the two corners. Express the points in the segment by showing first the point that is earlier in the input, then the point that is later. Sort the segments for output by examining the last point and showing first those points that are earlier in the input. Use the same rule on the first of the two points in case of ties.

SAMPLE OUTPUT (file fence4.out)

7
0 0 7 0
5 2 7 5
7 5 5 7
5 7 3 5
-2 7 0 3
0 0 -3 1
0 3 -3 1

——————————————————————题解

做的第三道计算几何

首先nofence的判定用两条线段是否相交【此处可能有图】

然后从观察者到一个点偏上一点点,偏下一点点,扫描看相交

然后求一个交点【此处可能有图】

判断交点是否在射线上

然后找一个距离观察者距离最小交点所在篱笆

 /*
LANG: C++
PROG: fence4
*/
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define siji(i,x,y) for(int i=(x); i <= (y) ; ++i)
#define xiaosiji(i,x,y) for(int i=(x);i < (y); ++i)
#define ivorysi
#define eps 1e-8
#define o(x) ((x)*(x))
using namespace std;
typedef long long ll;
int n;
struct vec{
double x,y;
vec operator - (const vec &rhs)const{
return (vec){x-rhs.x,y-rhs.y};
}
vec operator + (const vec &rhs)const{
return (vec){x+rhs.x,y+rhs.y};
}
vec operator * (double d)const{
return (vec){x*d,y*d};
}
vec operator / (double d)const{
return (vec){x/d,y/d};
}
double norm() const{
return x*x+y*y;
}
}pt[],observer;
struct line {
vec s,t;
}seg[];
bool visible[];
int ans;
double cross(vec a,vec b) {//求叉积
return a.x*b.y-b.x*a.y;
}
vec intersect(line a,line b) {//求交点
double s1=cross(b.s-a.s,b.t-a.s),s2=cross(b.t-a.t,b.s-a.t);
return a.s+(a.t-a.s)*s1/(s1+s2);
}
inline bool dcmp(double a,double b=) {
return fabs( a - b ) <= eps;
} bool iscross(line a,line b) {
if(cross(a.t-a.s,b.s-a.s)*cross(a.t-a.s,b.t-a.s)>= ||
cross(b.t-b.s,a.s-b.s)*cross(b.t-b.s,a.t-b.s)>=) return false;
return true;
}
void init() {
scanf("%d",&n);
scanf("%lf%lf",&observer.x,&observer.y);
siji(i,,n) {
scanf("%lf%lf",&pt[i].x,&pt[i].y);
}
siji(i,,n-) {
seg[i].s=pt[i],seg[i].t=pt[i+];
}
seg[n-].s=pt[],seg[n-].t=pt[n];
seg[n].s=pt[n-],seg[n].t=pt[n];
siji(i,,n) {
siji(j,,n) {
if(i==j) continue;
if(!iscross(seg[i],seg[j])) continue;
puts("NOFENCE");
exit();
}
}
}
void checkline(line l) {
double shortest;
int num=-;
siji(i,,n) {
if(cross(seg[i].s-l.s,l.t-l.s)*cross(seg[i].t-l.s,l.t-l.s)>=) continue;//射线只需要判定一个点
vec temp=intersect(l,seg[i])-l.s;
if(temp.x*(l.t.x-l.s.x) < || temp.y*(l.t.y-l.s.y)<) continue;//假如交点和射线上的点相乘小于0说明是不同方向
if(num==-) {
num=i;shortest=temp.norm();
}
else if(shortest>temp.norm()){
shortest=temp.norm();
num=i;
}
}
if(num!=-) visible[num]=;
}
void solve() {
init();
line l;
l.s=observer;
siji(i,,n) {
double angle=atan2(pt[i].y-l.s.y,pt[i].x-l.s.x);
l.t=l.s+(vec){cos(angle+eps),sin(angle+eps)};//偏上一点点
checkline(l);
l.t=l.s+(vec){cos(angle-eps),sin(angle-eps)};//偏下一点点
checkline(l);
}
siji(i,,n) {
if(visible[i]) ++ans;
}
printf("%d\n",ans);
siji(i,,n) {
if(visible[i]) printf("%d %d %d %d\n",
(int)seg[i].s.x,(int)seg[i].s.y,(int)seg[i].t.x,(int)seg[i].t.y);
}
}
int main(int argc, char const *argv[])
{
#ifdef ivorysi
freopen("fence4.in","r",stdin);
freopen("fence4.out","w",stdout);
#else
freopen("f1.in","r",stdin);
//freopen("f1.out","w",stdout);
#endif
solve();
return ;
}

USACO 6.5 Closed Fences的更多相关文章

  1. USACO 6.4 Electric Fences

    Electric FencesKolstad & Schrijvers Farmer John has decided to construct electric fences. He has ...

  2. USACO6.5-Closed Fences:计算几何

    Closed Fences A closed fence in the plane is a set of non-crossing, connected line segments with N c ...

  3. USACO 完结的一些感想

    其实日期没有那么近啦……只是我偶尔还点进去造成的,导致我没有每一章刷完的纪念日了 但是全刷完是今天啦 讲真,题很锻炼思维能力,USACO保持着一贯猎奇的题目描述,以及尽量不用高级算法就完成的题解……例 ...

  4. USACO 6.5 章节 世界上本没有龙 屠龙的人多了也便有了

    All Latin Squares 题目大意 n x n矩阵(n=2->7) 第一行1 2 3 4 5 ..N 每行每列,1-N各出现一次,求总方案数 题解 n最大为7 显然打表 写了个先数值后 ...

  5. USACO 3.3 Riding the Fences

    Riding the Fences Farmer John owns a large number of fences that must be repaired annually. He trave ...

  6. USACO Section 3.3: Riding the Fences

    典型的找欧拉路径的题.先贴下USACO上找欧拉路径的法子: Pick a starting node and recurse on that node. At each step: If the no ...

  7. 「USACO」「LuoguP2731」 骑马修栅栏 Riding the Fences(欧拉路径

    Description Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编 ...

  8. 【USACO 3.3】Riding The Fences(欧拉路径)

    题意: 给你每个fence连接的两个点的编号,输出编号序列的字典序最小的路径,满足每个fence必须走且最多走一次. 题解: 本题就是输出欧拉路径. 题目保证给出的图是一定存在欧拉路径,因此找到最小的 ...

  9. USACO Section 3.3 骑马修栅栏 Riding the Fences

    题目背景 Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. 题目描述 John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编一个 ...

随机推荐

  1. Java基础-日期格式化DateFormat类简介

    Java基础-日期格式化DateFormat类简介 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.DateFormat类概述 DateFormat 是日期/时间格式化子类的抽象 ...

  2. Linux服务器上使用curl命令发送报文

    报文格式如下: curl -l -H "Content-type: application/json" -X POST -d 'postdata' http://172.20.10 ...

  3. bzoj千题计划136:bzoj3931: [CQOI2015]网络吞吐量

    http://www.lydsy.com/JudgeOnline/problem.php?id=3931 在最短路网络上跑最大流 #include<queue> #include<c ...

  4. Django 2.0.1 官方文档翻译: 文档目录 (Page 1)

    Django documentation contents 翻译完成后会做标记. 文档按照官方提供的内容一页一页的进行翻译,有些内容涉及到其他节的内容,会慢慢补上.所有的翻译内容按自己的理解来写,尽量 ...

  5. 【转载】BP神经网络

    原文地址:http://blog.csdn.net/acdreamers/article/details/44657439 今天来讲BP神经网络,神经网络在机器学习中应用比较广泛,比如函数逼近,模式识 ...

  6. c++ 前置++与后置++的区别

    用C++编程的都知道,C++提供了一个非常强大的操作符重载机制,利用操作符重载,我们可以为我们自定义的类增加更多非常有用的功能.不过,C++也有限制,就是当我们为自定义的类重载操作符时,重载操作符的含 ...

  7. 织梦dedecms 模板文件不存在,无法解析文档!

    方法一:[此对应喜欢把模板文件使用".html"的格式,] /include/arc.archives.class.php 556行 if (!preg_match("# ...

  8. Docker 初相见

    Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源. Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后发布到任何流行的 Li ...

  9. 【leetcode 简单】 第一百五十题 两个列表的最小索引总和

    假设Andy和Doris想在晚餐时选择一家餐厅,并且他们都有一个表示最喜爱餐厅的列表,每个餐厅的名字用字符串表示. 你需要帮助他们用最少的索引和找出他们共同喜爱的餐厅. 如果答案不止一个,则输出所有答 ...

  10. HDU 2087 剪花布条 (KMP 不允许重叠的匹配)

    题目链接 Problem Description 一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢? Inp ...