Python中通过函数对象创建全局变量
先看下面这段代码,显然无法work. 因为代码试图在TestVariableScope()中引用一个没有被定义的变量a.所以必须报错,如下图-1.
不过如果你将第2行代码注释掉。代码就能跑通了,如图-2。
问题1来了:TestVariableScope.a 不是也没有被定义吗,为什么可以work呢?解释如下:先看代码第8行,TestVariableScope.a在SetVariable方法中被定义了,SetVariable()又 在TestVariableScope()前被调用。所以TestVariableScope()在被调用的时候TestVariableScope.a已经被定义了。
问题2来了:代码第7行,a也被定义了。为什么TestVariableScope()在引用a是报错呢。区别在于:a 只是SetVariable()中的一个local变量,TestVariableScope当然无法引用SetVariable中定义的局部变量了。因为违反了LEGB原则吗。TestVariableScope.a 就不一样了,他是一个全局变量哦。所以TestVariableScope当然可以访问这个全局变量了,完全不违反LEGB原则。
问题3来了:为什么TestVariableScope.a是个全局变量,而a却不是呢。因为python中函数皆是对象,而且是全局对象。TestVariableScope.a其实就是TestVariableScope这个全局对象下的一个变量而已,自然也是全局变量喽。 见图-3
def TestVariableScope():
print(a)
print(TestVariableScope.a)
TestVariableScope.a=13 def SetVariable():
a=12
TestVariableScope.a=12 if __name__=='Demo':
print('Demo is running') if __name__ == '__main__':
SetVariable()
TestVariableScope()
b=TestVariableScope
b()
图-1
图-2
图-3
以下关于LEGB, 引用自:https://magicalboy.com/python-scope-legb
Python 的变量作用域和 LEGB 原则
在 Python 程序中创建、改变或查找变量名时,都是在一个保存变量名的地方进行中,那个地方我们称之为命名空间。作用域这个术语也称之为命名空间。
具体地说,在代码中变量名被赋值(Python 中变量声明即赋值,global 声明的只是变量的使用域)的位置决定了该变量能被访问的范围。函数定义了本地作用域,而模块定义的是全局作用域。这两个作用域之前有如下关系:
- 每一个模块都是全局作用域。也就是说,创建于模块文件顶层的变量具有全局作用域,对于外部访问就成了一个模块对象的属性。
- 全局作用域的作用范围仅限于单个文件。“全局”指的是在一个文件的顶层变量名对于这个文件而言是全局的。
- 每次对函数的调用都创建了一个新的本地作用域。Python 中也有递归,即可以调用自身,每次调用都会创建五个新的本地命名空间。
- 赋值的变量名除非声明为全局变量,否则均为本地变量。如果需要在函数内部对模块文件顶层的变量名赋值,需要在函数内部通过 global 语句声明该变量。
- 所有的变量可归纳为本地、全局或者内置三种。范围分别为 def 内部,在一个模块的命名空间内部和预定义的 __builtin__ 模块提供的变量。
变量名解析:LEGB 原则
如果对以上内容有所迷惑的话,请看以下总结出的几条原则。在函数命名空间中:
- 变量名引用分为三个作用域进行查找:首先是本地,然后是函数内(如果有的话),之后是全局,最后是内置。
- 在默认情况下,变量名赋值会创建或者改变本地变量。
- 全局声明将会给映射到模块文件内部的作用域的变量名赋值。
- Python 的变量名解析机制也称为 LEGB 法则,具体如下: 当在函数中使用未确定的变量名时,Python 搜索 4 个作用域:本地作用域(L),之后是上一层嵌套结构中 def 或 lambda 的本地作用域(E),之后是全局作用域(G),最后是内置作用域(B)。按这个查找原则,在第一处找到的地方停止。如果没有找到,Python 会报错的。
- 下图说明了搜索流程(由内及外):
Python中通过函数对象创建全局变量的更多相关文章
- Python中的函数对象与闭包
函数在Python中是第一类对象,可以当做参数传递给其他函数,放在数据结构中,以及作为函数的返回结果. 下面的例子为接受另外一个函数作为输入并调用它 #foo.py def callf(func): ...
- python中的函数对象与闭包函数
函数对象 在python中,一切皆对象,函数也是对象 在python语言中,声明或定义一个函数时,使用语句: def func_name(arg1,arg2,...): func_suite 当执行流 ...
- python中的函数对象的内存地址是多少
今天和同学讨论一个问题,发现了函数的内存地址和我想象的不一样. 我以为同一个函数,假如给的参数不一样,那么这两个函数的id就不一样. 然后经过实验,发现python为了便于管理函数,所有的函数都放在同 ...
- python中range()函数的用法
python中range()函数可创建一个整数列表,一般用在for循环中. range()函数语法: range(start,stop[,step]) 参数说明: star: 计数从star开始.默认 ...
- python中的一等对象--函数
一等对象 什么是一等对象: 在运行时创建 能赋值给变量或数据结构中的元素 能作为参数传递给函数 能作为函数的返回结果 python中的字符串,列表什么的都是一等对象,但对如果之前只是使用c++.jav ...
- js中函数对象创建的总结
在JavaScript的函数对象创建方法中,可以分为三种情况: 1:第一种是使用function语句定义函数 <script type="text/javascript"&g ...
- python中的函数、生成器的工作原理
1.python中函数的工作原理 def foo(): bar() def bar(): pass python的解释器,也就是python.exe(c编写)会用PyEval_EvalFramEx(c ...
- [19/10/13-星期日] Python中的函数
一.函数 # 第五章 函数 ## 函数简介(function) - 函数也是一个对象 - 对象是内存中专门用来存储数据的一块区域 - 函数可以用来保存一些可执行的代码,并且可以在需要时,对这些语句进行 ...
- python中isinstance函数
1.描述 python中isinstance()函数,是python中的一个内置函数,用来判断一个函数是否是一个已知的类型,类似type(). 2.语法 isinstance(object,class ...
随机推荐
- 47 On Interpersonal Relationship 关于人际关系
47 On Interpersonal Relationship 关于人际关系 ①Since we are social beings, the quality of our lives depend ...
- 大文件webuploader的基本使用
webuploader的简单使用 需要的文件 自备 百度很多 webuploader.js uploader.swf jQuery <!DOCTYPE html> <htm ...
- nodejs中如何使用mysql数据库[node-mysql翻译]
nodejs中如何使用mysql数据库 db-mysql因为node-waf: not found已经不能使用,可以使用mysql代替. 本文主要是[node-mysql]: https://www. ...
- linux常见命令整理
Linux管理文件和目录的命令 命令 功能 命令 功能 pwd 显示当前目录 ls 查看目录下的内容 cd 改变所在目录 cat 显示文件的内容 grep 在文件中查找某字符 cp 复制文件 touc ...
- java的IO操作
转自http://zhangbaoming815.iteye.com/blog/1578438 将字符串写入到txt文件中import java.io.BufferedWriter; import j ...
- Ubuntu 16.04下安装网络流量分析工具 Wireshark
本文链接地址:https://www.linuxidc.com/Linux/2016-08/134526.htm 切勿用商业用途 sudo apt-add-repository ppa:wiresha ...
- (最短路 dijkstra)昂贵的聘礼 -- poj -- 1062
链接: http://poj.org/problem?id=1062 昂贵的聘礼 Time Limit: 1000MS Memory Limit: 10000K Total Submissions ...
- (最小生成树)Agri-Net -- POJ -- 1258
链接: http://poj.org/problem?id=1258 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82831#probl ...
- hdu1002 A + B Problem II(高精度加法) 2016-05-19 12:00 106人阅读 评论(0) 收藏
A + B Problem II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- 从0学习JQ
转 张子秋的博客 为以后用到的时候好查询! 从零开始学习jQuery (一) 开天辟地入门篇 从零开始学习jQuery (二) 万能的选择器 从零开始学习jQuery (三) 管理jQuery包装集 ...