对数正态分布(logarithmic normal distribution)是指一个随机变量的对数服从正态分布,则该随机变量服从对数正态分布。对数正态分布从短期来看,与正态分布非常接近。但长期来看,对数正态分布向上分布的数值更多一些。

有些量本身就是不对称的。例如,试想,人们完成某项特定任务需要的时间:因为每个人都是不同的,我们会得到一个分布。然而,所有的值都必然是正数(因为时间不可能为负数)。而且,我们还能预测到该分布可能的形状:有一个无人可及的最小时间,然后是少数一些非常快的“冠军”,接下来就是普通人的最具代表性的完成时间形成一个高峰,最后是尾部一长串的“掉队者”。显然,高斯分布不会很好地描述这样的分布,因为高斯分布中x可以定义为正值,也可定义为负值,它是对称的且尾部很短。 [1] 
在很多应用中,特别是在可靠性和维修性方面,数据可能不符合正态分布。可是,随机变量的对数可能符合正态分布,对此情况称为对数正态分布。如果应用对数正态分布,在对数正态图纸上数据的图形将是一条直线。绘图的过程与其他分布是相同的。其分析的过程包括计算对数值的平均值和标准差,以及对最终结果取反对数。 [2] 
对数正态分布与正态分布很类似,除了它的概率分布向右进行了移动。对数正态分布从短期来看,与正态分布非常接近。但长期来看,对数正态分布向上分布的数值更多一些。更准确地说,对数正态分布中,有更大向上波动的可能,更小向下波动的可能。 [3] 
对数正态分布用于半导体器件的可靠性分析和某些种类的机械零件的疲劳寿命。其主要用途是在维修性分析中对修理时间数据进行确切的分析。
已知对数正态分布的密度函数,就可以根据可靠度与不可靠度函数的定义计算出该分布的可靠度函数和不可靠度函数的表达式

性质

对数正态分布具有如下性质:
(1)正态分布经指数变换后即为对数正态分布;对数正态分布经对数变换后即为正态分布。
(2)γ,t是正实数,X是参数为(μ,σ)的对数正态分布,则

仍是对数正态分布,参数为

(3)对数正态总是右偏的。
(4)对数正态分布的均值和方差是其参数(μ,σ)的增函数。
(5)对给定的参数μ,当σ趋于零时,对数正态分布的均值趋于exp(μ),方差趋于零

应用:股票
对数正态分布(logarithmic normal distribution):一个随机变量的对数服从正态分布,则该随机变量服从对数正态分布。
在分析测试中,特别是在痕量分析中,在不少情况下,测定值不遵循正态分布,而是遵循对数正态分布。
在概率论与统计学中,对数正态分布是对数为正态分布的任意随机变量的概率分布。如果 X 是服从正态分布的随机变量,则 exp(X) 服从对数正态分布;同样,如果 Y 服从对数正态分布,则 ln(Y) 服从正态分布。 如果一个变量可以看作是许多很小独立因子的乘积,则这个变量可以看作是对数正态分布。一个典型的例子是股票投资的长期收益率,它可以看作是每天收益率的乘积。
Some common distributions which are not directly related to the normal distribution
are described briefly in the following:
• Lognormal distribution: A normal distribution, plotted on an exponential scale.
A logarithmic transformation of the data is often used to convert a strongly
skewed distribution into a normal one.

Normal distributions are the easiest ones to work with. In some circumstances a set
of data with a positively skewed distribution can be transformed into a symmetric,
normal distribution by taking logarithms. Taking logs of data with a skewed
distribution will often give a distribution that is near to normal

https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)

Lognormal Distribution对数正态分布的更多相关文章

  1. Lognormal distribution 对数正态分布

    转载:https://blog.csdn.net/donggui8650/article/details/101556041 在概率论中,对数正态分布是一种连续概率分布,其随机变量的对数服从正态分布. ...

  2. 关于使用scipy.stats.lognorm来模拟对数正态分布的误区

    lognorm方法的参数容易把人搞蒙.例如lognorm.rvs(s, loc=0, scale=1, size=1)中的参数s,loc,scale, 要记住:loc和scale并不是我们通常理解的对 ...

  3. 一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布

    一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ ...

  4. python stats画正态分布、指数分布、对数正态分布的QQ图

    stats.probplot(grade, dist=stats.norm, plot=plt) #正态分布 # stats.probplot(grade, dist=stats.expon, plo ...

  5. Multivariate normal distribution | 多元正态分布

    现在终于需要用到了.

  6. NLP&数据挖掘基础知识

    Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...

  7. 常用的机器学习&数据挖掘知识点【转】

    转自: [基础]常用的机器学习&数据挖掘知识点 Basis(基础): MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Le ...

  8. 【基础】常用的机器学习&数据挖掘知识点

    Basis(基础): MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),ML ...

  9. 常用的机器学习&数据挖掘知识(点)总结

    Basis(基础): MSE(Mean Square Error 均方误差), LMS(LeastMean Square 最小均方), LSM(Least Square Methods 最小二乘法), ...

随机推荐

  1. 利用selenium 爬取豆瓣 武林外传数据并且完成 数据可视化 情绪分析

    全文的步骤可以大概分为几步: 一:数据获取,利用selenium+多进程(linux上selenium 多进程可能会有问题)+kafka写数据(linux首选必选耦合)windows直接采用的是写my ...

  2. Red Hat Enterprise Linux 6安装好,开启网卡到搭建tftp服务器和安装dnw驱动,安装samba服务器

    今天一顿误操作,只能把Red Hat Enterprise Linux 6重新安装,一些必备工作只能重做,重做之后立马把Linux的文件备份,以备不时只需! 开启Linux以太网卡:vim /etc/ ...

  3. mysql连接类与ORM的封装

    ORM: - ORM什么是? 类名 ---> 数据库表 对象 ---> 记录 对象.属性 ---> 字段 - ORM的优缺点: 优点: 可跨平台,可以通过对象.属性取值,对象.方法, ...

  4. 使用GitHub(三):使用VSCode+GitHub进行版本控制

    使用GitHub(三):使用VSCode+GitHub进行版本控制 本文简单介绍使用VSCode+GitHub进行项目或者代码的版本控制.本文主要目的是对学习内容进行总结以及方便日后查阅. 详细教程和 ...

  5. 前端js之BOM和DOM操作

    目录 引入 BOM操作 window对象 history对象 location对象(重点) 弹出框 定时器 计时器相关 DOM 查找标签 直接查找 间接查找 节点操作 创建节点及添加节点 删除节点 替 ...

  6. qt5---滑动条QSlider

    需要    #include <QSlider> #include "win.h" #include <QDebug> #include <QPush ...

  7. python连接mysql操作(1)

    python连接mysql操作(1) import pymysql import pymysql.cursors # 连接数据库 connect = pymysql.Connect( host='10 ...

  8. [Python之路] HTTP协议复习笔记

    一.HTTP请求的直观了解 我们使用网络调试助手来模拟一个TCP Server,然后使用浏览器来访问对应的IP:Port. 启动后,我们使用谷歌浏览器来访问192.168.1.8:8080: 我们可以 ...

  9. QT:QSS完全无效的原因

    QSS的文件格式不是UTF-8,导致读取到的文件中字符串出现乱码.

  10. 51 Nod 1066 Bash游戏

    1066 Bash游戏  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 有一堆石子共有N个.A B两个人轮流拿,A先拿.每次最少拿1颗,最多拿K颗,拿到 ...